Catalytic hydrogen combustion for treatment of combustible gases from fuel cell processors

[1]  Parag A. Deshpande,et al.  Support-Dependent Activity of Noble Metal Substituted Oxide Catalysts for the Water Gas Shift Reaction , 2010 .

[2]  Parag A. Deshpande,et al.  Pd and Pt ions as highly active sites for the water–gas shift reaction over combustion synthesized zirconia and zirconia-modified ceria , 2010 .

[3]  V. Baglio,et al.  Comparison between Ni-Rh/gadolinia doped ceria catalysts in reforming of propane for anode implementations in intermediate solid oxide fuel cells , 2010 .

[4]  M. S. Hegde,et al.  Catalysis for NOx abatement , 2009 .

[5]  M. S. Hegde,et al.  Noble metal ionic catalysts. , 2009, Accounts of chemical research.

[6]  M. S. Hegde,et al.  Low temperature NOx and N2O reduction by H2: Mechanism and development of new nano-catalysts , 2008 .

[7]  M. S. Hegde,et al.  Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications , 2008 .

[8]  J. Kašpar,et al.  A rationale for the development of thermally stable nanostructured CeO2-ZrO2-containing mixed oxides , 2008 .

[9]  D. Vlachos,et al.  Stability and performance of catalytic microreactors: Simulations of propane catalytic combustion on Pt , 2008 .

[10]  M. S. Hegde,et al.  Hydrogen Spillover on CeO2/Pt: Enhanced Storage of Active Hydrogen , 2007 .

[11]  L. Pfefferle,et al.  Stability of palladium-based catalysts during catalytic combustion of methane: The influence of water , 2007 .

[12]  M. S. Hegde,et al.  High rates of CO and hydrocarbon oxidation and NO reduction by CO over Ti0.99Pd0.01O1.99 , 2007 .

[13]  M. S. Hegde,et al.  High rates of NO and N2O reduction by CO, CO and hydrocarbon oxidation by O2 over nano crystalline Ce0.98Pd0.02O2−δ: Catalytic and kinetic studies , 2007 .

[14]  Claire H. Woo,et al.  PEM fuel cell current regulation by fuel feed control , 2007 .

[15]  M. S. Hegde,et al.  Reducibility of Ce1-xZrxO2: Origin of Enhanced Oxygen Storage Capacity , 2006 .

[16]  E. Aneggi,et al.  Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO2 and CeO2–ZrO2 , 2006 .

[17]  Marco Nicola Mario Carcassi,et al.  Deflagrations of H2–air and CH4–air lean mixtures in a vented multi-compartment environment , 2005 .

[18]  J. Kašpar,et al.  Nanostructured CeO2–ZrO2 mixed oxides , 2005 .

[19]  Zhixiong You,et al.  Catalytic combustion of methane over microemulsion-derived MnOx-Cs2O-Al2O3 nanocomposites , 2004 .

[20]  J. Kašpar,et al.  Thermal stabilization of CexZr1-xO2 oxygen storage promoters by addition of Al2O3: Effect of thermal aging on textural, structural, and morphological properties , 2004 .

[21]  D. G. Norton,et al.  A CFD study of propane/air microflame stability , 2004 .

[22]  Yung-cheng Chen,et al.  Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion , 2004 .

[23]  Franck Morfin,et al.  Catalytic combustion of hydrogen for mitigating hydrogen risk in case of a severe accident in a nuclear power plant: study of catalysts poisoning in a representative atmosphere , 2004 .

[24]  D. G. Norton,et al.  Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures , 2003 .

[25]  P. Wierzchowski Kinetics of catalytic oxidation of carbon monoxide and methane combustion over alumina supported Ga2O3, SnO2 or V2O5 , 2003 .

[26]  Robert W. Bilger,et al.  Experimental investigation of three-dimensional flame-front structure in premixed turbulent combustion-I: Hydrocarbon/air Bunsen flames , 2002 .

[27]  J. Llorca,et al.  Reduction and Oxygen Storage Behavior of Noble Metals Supported on Silica-Doped Ceria , 2002 .

[28]  Paolo Fornasiero,et al.  Catalysis by Ceria and Related Materials , 2002 .

[29]  P. Ciambelli,et al.  AFeO3 (A=La, Nd, Sm) and LaFe1−xMgxO3 perovskites as methane combustion and CO oxidation catalysts: structural, redox and catalytic properties , 2001 .

[30]  J. Kašpar,et al.  Reduction of NO by CO over Rh/CeO2–ZrO2Catalysts: Evidence for a Support-Promoted Catalytic Activity , 1998 .

[31]  Mauro Graziani,et al.  Effects of Trivalent Dopants on the Redox Properties of Ce0.6Zr0.4O2Mixed Oxide , 1997 .

[32]  J. Kašpar,et al.  NO decomposition over partially reduced metallized CeO2-ZrO2 solid solutions , 1994 .

[33]  I. Lundström,et al.  Water production on palladium in hydrogen−oxygen atmospheres , 1985 .

[34]  A. Hughes,et al.  A comparison of weak molecular adsorption of organic molecules on clean copper and platinum surfaces , 1984 .

[35]  R. N. Pease,et al.  THE CATALYTIC FORMATION OF WATER VAPOR FROM HYDROGEN AND OXYGEN IN THE PRESENCE OF COPPER AND COPPER OXIDE , 1922 .

[36]  L. Casey,et al.  Utilizing waste hydrogen for energy recovery using fuel cells and associated technologies , 2004, Fifty-First Annual Conference 2004 Petroleum and Chemical Industry Technical Conference, 2004..

[37]  Comas Haynes,et al.  Clarifying reversible efficiency misconceptions of high temperature fuel cells in relation to reversible heat engines , 2001 .

[38]  Y. Çengel,et al.  Thermodynamics : An Engineering Approach , 1989 .

[39]  P. Emmett,et al.  A Comparison of the Catalytic and Chemical Characteristics of Cubic and Rhombohedral Ferric Oxide , 1929 .