Zebra stripes in the Atacama Desert revisited – Granular fingering as a mechanism for zebra stripe formation?

Abstract Although a number of studies have pointed out the remarkable slowness of Earth surface processes in the Atacama Desert, process mechanisms under such extremely limited water availability are poorly understood, and process rates remain unknown. This paper revisits the discussion on the formation of the prominent Atacama-specific hillslope zebra (stone) stripes, previously interpreted to result from palaeo-overland flow (Owen et al., 2013). Compared to this study, our data document different stripe characteristics with regard to stripe form and orientation as well as sorting- and bedding-patterns of stripe-confining surface gravel units. We found a remarkable form-concordance between zebra stripes and deposits from experiments on segregation-induced granular fingering. Hence, we propose a combination of seismic shaking and instantaneous dry granular free surface flows as the key mechanism for zebra stripe formation. Our findings underline the potential significance of seismicity in shaping Atacama landscapes, which bear important analogies to extra-terrestrial surfaces.

[1]  H. Yizhaq,et al.  Aeolian sand sorting and megaripple formation , 2018 .

[2]  J. Houston,et al.  Variability of precipitation in the Atacama Desert: its causes and hydrological impact , 2006 .

[3]  J. Vallance,et al.  Segregation induced instabilities of granular fronts. , 1999, Chaos.

[4]  R. Espejo,et al.  Fog measurements at the site "Falda Verde" north of Chañaral compared with other fog stations of Chile , 2002 .

[5]  J. Delour,et al.  Fingering in granular flows , 1997, Nature.

[6]  W. Dietrich,et al.  The sensitivity of hillslope bedrock erosion to precipitation , 2011 .

[7]  Adrian J. Hartley,et al.  The central Andean west‐slope rainshadow and its potential contribution to the origin of hyper‐aridity in the Atacama Desert , 2003 .

[8]  A. Kleber,et al.  Alignment of stone‐pavement clasts by unconcentrated overland flow – implications of numerical and physical modelling , 2013 .

[9]  Robert S. Schemenauer,et al.  Advective, orographic and radiation fog in the Tarapacá region, Chile , 2002 .

[10]  Luc Ortlieb,et al.  ENSO tropical-extratropical climate teleconnections and mechanisms for Holocene debris flows along the hyperarid coast of western South America (17°-24°S) , 2006 .

[11]  S. Schumm EVOLUTION OF DRAINAGE SYSTEMS AND SLOPES IN BADLANDS AT PERTH AMBOY, NEW JERSEY , 1956 .

[12]  W. Dietrich,et al.  Zebra stripes in the Atacama Desert: Fossil evidence of overland flow , 2013 .

[13]  Jean Poesen,et al.  Soil and water components of banded vegetation patterns , 1999 .

[14]  Map and database of Quaternary faults in Bolivia and Chile , 2000 .

[15]  J. Betancourt,et al.  Vegetation invasions into absolute desert: A 45;th000 yr rodent midden record from the Calama–Salar de Atacama basins, northern Chile (lat 22°–24°S) , 2002 .

[16]  P. Vásquez,et al.  Comment on paper by Ritter et al. (2018), Evidence for multiple Plio-Pleistocene lake episodes in the hyperarid Atacama Desert, published in Quaternary Geochronology: v. 44, p. 1–12. DOI: 10.1016/j.quageo.2017.11.002 , 2018, Quaternary Geochronology.

[17]  F. Melone,et al.  On the interaction between infiltration and Hortonian runoff , 1998 .

[18]  I. Pater,et al.  Rain infiltration and crust formation in the extreme arid zone of the Atacama Desert, Chile , 2010 .

[19]  R. Armijo,et al.  The MW=8.1 Antofagasta (North Chile) Earthquake of July 30, 1995: First results from teleseismic and geodetic data , 1996 .

[20]  J. Loveless Extensional tectonics in a convergent margin setting: Deformation of the northern Chilean forearc , 2007 .

[21]  A. Sáez,et al.  The stratigraphic record of changing hyperaridity in the Atacama desert over the last 10 Ma , 2012 .

[22]  A. Kleber,et al.  Formation mechanisms and control factors of vesicular soil structure , 2012 .

[23]  M. Heckel,et al.  Pattern formation in a horizontally shaken granular submonolayer , 2013 .

[24]  T. Jordan,et al.  Evidence for the development of the Andean rain shadow from a Neogene isotopic record in the Atacama Desert, Chile , 2010 .

[25]  J. Böhlke,et al.  Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: New evidence from mass-independent oxygen isotopic compositions , 2004 .

[26]  R. Finkel,et al.  Desert pavement-coated surfaces in extreme deserts present the longest-lived landforms on Earth , 2009 .

[27]  C. Latorre,et al.  Late Pleistocene human occupation of the hyperarid core in the Atacama Desert, northern Chile , 2013 .

[28]  Juan Luis Beceiro García,et al.  El aluvión del 9 agosto 2015 en Alto Patache, región de Tarapacá, Desierto de Atacama 1 , 2017 .

[29]  S. Wells,et al.  Environmental history recorded in aeolian deposits under stone pavements, Mojave Desert, USA , 2016, Quaternary Research.

[30]  N. Bridges,et al.  Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments , 2015 .

[31]  C. Latorre,et al.  Perennial stream discharge in the hyperarid Atacama Desert of northern Chile during the latest Pleistocene , 2007, Proceedings of the National Academy of Sciences.

[32]  Samuel Niedermann,et al.  Evidence for active landscape evolution in the hyperarid Atacama from multiple terrestrial cosmogenic nuclides , 2010 .

[33]  Jonathan D. A. Clarke,et al.  Antiquity of aridity in the Chilean Atacama Desert , 2006 .

[34]  Jonathan A. Sherratt,et al.  Using wavelength and slope to infer the historical origin of semiarid vegetation bands , 2015, Proceedings of the National Academy of Sciences.

[35]  Christopher P. McKay,et al.  A threshold in soil formation at Earth's arid-hyperarid transition , 2006 .

[36]  M. Pritchard,et al.  Motion on upper‐plate faults during subduction zone earthquakes: Case of the Atacama Fault System, northern Chile , 2008 .

[37]  D. Dunkerley,et al.  Banded vegetation near Broken Hill, Australia: significance of surface roughness and soil physical properties , 1999 .

[38]  Jon D. Pelletier,et al.  How do vegetation bands form in dry lands? Insights from numerical modeling and field studies in southern Nevada, USA , 2012 .

[39]  J. Šimůnek,et al.  Overland Flow , 2021, Natural Wastewater Treatment Systems and Sustainability.

[40]  T. Jordan,et al.  Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile , 2014 .

[41]  Eric V. McDonald,et al.  The vesicular layer and carbonate collars of desert soils and pavements: formation, age and relation to climate change , 1998 .

[42]  F. Stuart,et al.  Evidence for multiple Plio-Pleistocene lake episodes in the hyperarid Atacama Desert , 2018 .

[43]  G. Wörner,et al.  Palaeoclimatic implications of Mio–Pliocene sedimentation in the high-altitude intra-arc Lauca Basin of northern Chile , 1999 .

[44]  Tibor J. Dunai,et al.  Oligocene Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms , 2005 .

[45]  Yanjun Shen,et al.  Development of topsoil grain size index for monitoring desertification in arid land using remote sensing , 2006 .

[46]  S. Wells,et al.  Pedogenesis of Vesicular Horizons, Cima Volcanic Field, Mojave Desert, California , 2002 .

[47]  T. Jordan,et al.  Late Miocene to Early Pliocene paleohydrology and landscape evolution of Northern Chile, 19° to 20° S , 2013 .

[48]  M. Grosjean,et al.  A 22,000 14C year BP sediment and pollen record of climate change from Laguna Miscanti (23°S), northern Chile , 2001 .

[49]  K. Joy,et al.  Granular avalanches on the Moon: Mass‐wasting conditions, processes, and features , 2017 .

[50]  B. Werner,et al.  Self-Organization of Sorted Patterned Ground , 2003, Science.

[51]  J. Milana Largest wind ripples on Earth , 2009 .

[52]  H. Veit Southern Westerlies during the Holocene deduced from geomorphological and pedological studies in the Norte Chico, Northern Chile (27–33°S) , 1996 .

[53]  Kendra E. Murray,et al.  Seismicity and the strange rubbing boulders of the Atacama Desert, northern Chile , 2012 .

[54]  H. Philip,et al.  Recent crustal deformation in the Antofagasta region (northern Chile) and the subduction process , 1998 .

[55]  J. Betancourt,et al.  Late Quaternary environmental dynamics in the Atacama Desert reconstructed from rodent midden pollen records , 2017 .

[56]  M. Reich,et al.  Nitrate Deposits of the Atacama Desert: A Marker of Long-Term Hyperaridity , 2018, Elements.

[57]  J. Cembrano,et al.  The link between forearc tectonics and Pliocene-Quaternary deformation of the Coastal Cordillera, northern Chile , 2003 .

[58]  D. Fink,et al.  Seismic origin of the Atacama Desert boulder fields , 2015 .

[59]  E. Mignot,et al.  An integrated analysis of the March 2015 Atacama floods , 2016 .

[60]  R. Allmendinger,et al.  Young displacements on the Atacama Fault System, northern Chile from field observations and cosmogenic 21Ne concentrations , 2006 .

[61]  R. Horton EROSIONAL DEVELOPMENT OF STREAMS AND THEIR DRAINAGE BASINS; HYDROPHYSICAL APPROACH TO QUANTITATIVE MORPHOLOGY , 1945 .

[62]  J. Gray,et al.  Particle-size segregation in dense granular avalanches , 2015 .

[63]  T. Monfret,et al.  Crustal seismicity in central Chile , 2004 .