Large electrostrain and high energy-storage properties of (Sr1/3Nb2/3)4+-substituted (Bi0.51Na0.5)TiO3-0.07BaTiO3 lead-free ceramics

[1]  Yan Yan,et al.  Enhanced antiferroelectric-like relaxor ferroelectric characteristic boosting energy storage performance of (Bi0.5Na0.5)TiO3-based ceramics via defect engineering , 2022, Journal of Materiomics.

[2]  Li Jin,et al.  Nonstoichiometric effect on dielectric and large-signal electromechanical properties of environmentally friendly BNT-6BT ferroelectric ceramics , 2022, Ceramics International.

[3]  Yan Yan,et al.  Enhancement of energy storage performance in lead-free barium titanate-based relaxor ferroelectrics through a synergistic two-step strategy design , 2022, Chemical Engineering Journal.

[4]  F. Gao,et al.  Achieving ultrahigh energy storage performance over a broad temperature range in (Bi0.5Na0.5)TiO3-based eco-friendly relaxor ferroelectric ceramics via multiple engineering processes , 2021, Journal of Alloys and Compounds.

[5]  Xiaoyong Wei,et al.  Ultrahigh electrostrictive effect in potassium sodium niobate-based lead-free ceramics , 2021, Journal of the European Ceramic Society.

[6]  Haibo Zhang,et al.  Energy storage performance of Na0.5Bi0.5TiO3 based lead-free ferroelectric ceramics prepared via non-uniform phase structure modification and rolling process , 2021 .

[7]  Yan Yan,et al.  Significantly improved energy storage performance of NBT-BT based ceramics through domain control and preparation optimization , 2021 .

[8]  Haibo Zhang,et al.  Phase evolution and relaxor to ferroelectric phase transition boosting ultrahigh electrostrains in (1−x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 solid solutions , 2021, Journal of Materiomics.

[9]  Y. Hao,et al.  Extremely High Piezoelectric Properties in Pb-Based Ceramics through Integrating Phase Boundary and Defect Engineering. , 2021, ACS applied materials & interfaces.

[10]  D. Poelman,et al.  High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges , 2021, Journal of Materials Chemistry A.

[11]  Luo Kong,et al.  A-site compositional modulation in barium titanate based relaxor ceramics to achieve simultaneously high energy density and efficiency , 2021 .

[12]  H. Fan,et al.  Large electro-strain with excellent fatigue resistance of lead-free (Bi0.5Na0.5)0.94Ba0.06Ti1-(Y0.5Nb0.5) O3 perovskite ceramics , 2021 .

[13]  Genshui Wang,et al.  High‐energy storage density in NaNbO 3 ‐modified (Bi 0.5 Na 0.5 )TiO 3 ‐BiAlO 3 ‐based lead‐free ceramics under low electric field , 2021 .

[14]  Yan Yan,et al.  Phase evolution in (1−x)(Na0.5Bi0.5)TiO3-xSrTiO3 solid solutions: A study focusing on dielectric and ferroelectric characteristics , 2020 .

[15]  Qi Zhang,et al.  Tailoring and improving the strong-electric-field electrical properties of the BNT-BT ferroelectric ceramics by a functional-group-doping , 2020 .

[16]  Qi Zhang,et al.  Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators , 2020 .

[17]  Xiaoyong Wei,et al.  Enhanced dielectric and ferroelectric properties in lead magnesium niobate-lead titanate ferroelectrics solid solutions by controlling the sintering protocols , 2020 .

[18]  Luo Kong,et al.  Evolution of the structure, dielectric and ferroelectric properties of Na0.5Bi0.5TiO3-added BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics , 2020 .

[19]  S. S. Islam,et al.  Thermal stability of dielectric and energy storage performances of Ca-substituted BNTZ ferroelectric ceramics , 2020 .

[20]  Juan Du,et al.  High-energy storage performance of (1 − x)[0.935(Bi0.5Na0.5)TiO3–0.065BaTiO3]–xBa(Zr0.3Ti0.7)O3 ceramics with wide temperature range , 2020, Journal of Materials Science: Materials in Electronics.

[21]  X. Chao,et al.  Regulation of energy density and efficiency in transparent ceramics by grain refinement , 2020, Chemical Engineering Journal.

[22]  F. Gao,et al.  Realizing high comprehensive energy storage performance in lead-free bulk ceramics via designing an unmatched temperature range , 2019, Journal of Materials Chemistry A.

[23]  F. Gao,et al.  Thermally stable electrostrains and composition-dependent electrostrictive coefficient Q33 in lead-free ferroelectric ceramics , 2019 .

[24]  F. Gao,et al.  Phase transition behavior and high electrostrictive strains in Bi(Li0.5Nb0.5)O3-doped lead magnesium niobate-based solid solutions , 2019, Journal of Alloys and Compounds.

[25]  H. Fan,et al.  Bi0.48(Na0.84K0.16)0.48Sr0.04(Ti1-Ta )O3 lead-free ceramics with enhanced electric field-induced strain , 2019, Journal of Alloys and Compounds.

[26]  Yan Yan,et al.  An investigation of the dielectric energy storage performance of Bi(Mg2/3Nb1/3)O3-modifed BaTiO3 Pb-free bulk ceramics with improved temperature/frequency stability , 2019, Ceramics International.

[27]  Yan Yan,et al.  High dielectric permittivity and electrostrictive strain in a wide temperature range in relaxor ferroelectric (1-x)[Pb(Mg1/3Nb2/3)O3-PbTiO3]-xBa(Zn1/3Nb2/3)O3 solid solutions , 2019, Ceramics International.

[28]  Yan Yan,et al.  High thermal stability of electric field-induced strain in (1−x)(Bi0.5Na0.5)TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 lead-free ferroelectrics , 2019, Journal of the European Ceramic Society.

[29]  Yan Yan,et al.  High electric field-induced strain with ultra-low hysteresis and giant electrostrictive coefficient in barium strontium titanate lead-free ferroelectrics , 2019, Journal of the European Ceramic Society.

[30]  Wei Li,et al.  Progress in high-strain perovskite piezoelectric ceramics , 2019, Materials Science and Engineering: R: Reports.

[31]  Yan Yan,et al.  A strategy for obtaining high electrostrictive properties and its application in barium stannate titanate lead-free ferroelectrics , 2018, Ceramics International.

[32]  Bing Xie,et al.  Temperature-insensitive electric-field-induced strain and enhanced piezoelectric properties of <001> textured (K,Na)NbO3-based lead-free piezoceramics , 2018, Acta Materialia.

[33]  Xiaoyong Wei,et al.  Origin of composition-insensitive electrostrictive coefficient and continuous decrease of domain wall density in (1-x)NaNbO3-xBaTiO3 lead-free ferroelectrics , 2018, Journal of the European Ceramic Society.

[34]  Haibo Zhang,et al.  Structure, dielectric, ferroelectric, and field-induced strain response properties of (Mg1/3Nb2/3)4+ complex-ion modified Bi0.5(Na0.82K0.18)0.5TiO3 lead-free ceramics , 2018 .

[35]  Bing Xie,et al.  Large electric-field-induced strain in B-site complex-ion (Fe0.5Nb0.5)4+-doped Bi1/2 (Na0.82K0.12)1/2TiO3 lead-free piezoceramics , 2018 .

[36]  Mupeng Zheng,et al.  High-temperature dielectrics based on (1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xNaNbO3 system , 2017 .

[37]  Y. Wan,et al.  Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics , 2017 .

[38]  X. Lou,et al.  The dielectric, strain and energy storage density of BNT-BKHxT1−x piezoelectric ceramics , 2017 .

[39]  Yunfei Liu,et al.  Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics , 2017 .

[40]  Longtu Li,et al.  Enhanced Energy-Storage Density and High Efficiency of Lead-Free CaTiO3-BiScO3 Linear Dielectric Ceramics. , 2017, ACS applied materials & interfaces.

[41]  Longtu Li,et al.  Energy storage properties of ultra fine-grained Ba0.4Sr0.6TiO3-based ceramics sintered at low temperature , 2017 .

[42]  Longtu Li,et al.  Core-shell BaTiO3@BiScO3 particles for local graded dielectric ceramics with enhanced temperature stability and energy storage capability , 2016 .

[43]  Hairui Liu,et al.  Phase transition behavior, dielectric and ferroelectric properties of(1 − x)(Bi0.5Na0.5)TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics , 2016 .

[44]  Shinuk Cho,et al.  High strain response in ternary Bi0.5Na0.5TiO3–BaTiO3–Bi(Mn0.5Ti0.5)O3 solid solutions , 2016 .

[45]  J. Zhai,et al.  Composition- and temperature-driven phase transition characteristics and associated electromechanical properties in Bi0.5Na0.5TiO3-based lead-free ceramics. , 2016, Dalton transactions.

[46]  Longtu Li,et al.  Lead-free BaTiO3–Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage , 2016 .

[47]  Renfei Cheng,et al.  Electric field-induced ultrahigh strain and large piezoelectric effect in Bi1/2Na1/2TiO3-based lead-free piezoceramics , 2016 .

[48]  W. Jo,et al.  Diffused Phase Transition Boosts Thermal Stability of High‐Performance Lead‐Free Piezoelectrics , 2016 .

[49]  Pan Chen,et al.  Improvement of dielectric and energy storage properties in Bi(Mg1/2Ti1/2)O3-modified (Na1/2Bi1/2)0.92Ba0.08TiO3 ceramics , 2016 .

[50]  Haibo Zhang,et al.  Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics , 2015 .

[51]  Longtu Li,et al.  BaTiO3–BiYbO3 perovskite materials for energy storage applications , 2015 .

[52]  Qi Zhang,et al.  Large Strain in Relaxor/Ferroelectric Composite Lead‐Free Piezoceramics , 2015 .

[53]  Kyle G. Webber,et al.  Transferring lead-free piezoelectric ceramics into application , 2015 .

[54]  Li Tianming,et al.  Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics , 2015 .

[55]  Xiaoyong Wei,et al.  Relaxor Ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 Ceramics for Energy Storage Application , 2015 .

[56]  Dragan Damjanovic,et al.  Compositional behavior of Raman-active phonons in Pb(Zr,Ti)O3 ceramics , 2015 .

[57]  Zhenrong Li,et al.  Piezoelectric activity in Perovskite ferroelectric crystals , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[58]  Fei Li,et al.  High electrostrictive coefficient Q33 in lead-free Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoelectric ceramics , 2014 .

[59]  Feifei Wang,et al.  Ferroelectric, dielectric properties and large strain response in Zr-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free ceramics , 2014 .

[60]  A. Bell,et al.  Large Electrostrictive Strain in (Bi0.5Na0.5)TiO3–BaTiO3–(Sr0.7Bi0.2)TiO3 Solid Solutions , 2014 .

[61]  L. Luo,et al.  Energy-storage properties of (1−x)Bi0.47Na0.47Ba0.06TiO3–xKNbO3 lead-free ceramics , 2014 .

[62]  Fei Li,et al.  Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity , 2014 .

[63]  Fei Li,et al.  Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures , 2014, Progress in Advanced Dielectrics.

[64]  Fei Li,et al.  Electrostrictive effect in Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals , 2013 .

[65]  Jiadong Zang,et al.  Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective , 2012, Journal of Electroceramics.

[66]  Shujun Zhang,et al.  High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective , 2012 .

[67]  V. Shvartsman,et al.  Lead-Free Relaxor Ferroelectrics , 2012 .

[68]  Dragan Damjanovic,et al.  Position of defects with respect to domain walls in Fe3+-doped Pb[Zr0.52Ti0.48]O3 piezoelectric ceramics , 2011 .

[69]  P. Vanĕk,et al.  Lattice dynamics and dielectric response of undoped, soft and hard PbZr0.42Ti0.58O3 , 2010 .

[70]  Dragan Damjanovic,et al.  Domain wall contributions in Pb"Zr,Ti…O3 ceramics at morphotropic phase boundary: A study of dielectric dispersion , 2010 .

[71]  Wook Jo,et al.  Temperature‐Insensitive Large Strain of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–(K0.5Na0.5)NbO3 Lead‐Free Piezoceramics , 2010 .

[72]  Dragan Damjanovic,et al.  WHAT CAN BE EXPECTED FROM LEAD-FREE PIEZOELECTRIC MATERIALS? , 2010 .

[73]  Dragan Damjanovic,et al.  High‐Strain Lead‐free Antiferroelectric Electrostrictors , 2009 .

[74]  Dragan Damjanovic,et al.  Nanodomains in Fe+3-doped lead zirconate titanate ceramics at the morphotropic phase boundary do not correlate with high properties , 2009 .

[75]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[76]  Dragan Damjanovic,et al.  Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics , 2009, Journal of Applied Physics.

[77]  Helmut Ehrenberg,et al.  Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system , 2007 .

[78]  H. Nagata,et al.  Electrical Properties and Depolarization Temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 Lead-free Piezoelectric Ceramics , 2006 .

[79]  Yujun Feng,et al.  Abnormal C–V curve and clockwise hysteresis loop in ferroelectric barium stannate titanate ceramics , 2005 .

[80]  Y. Xi,et al.  Dielectric relaxation behavior in barium stannate titanate ferroelectric ceramics with diffused phase transition , 2003 .

[81]  G. Shirane,et al.  Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3 , 2002, cond-mat/0203422.

[82]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[83]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[84]  Dragan Damjanovic,et al.  FERROELECTRIC, DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF FERROELECTRIC THIN FILMS AND CERAMICS , 1998 .

[85]  Tadashi Takenaka,et al.  (Bi1/2Na1/2)TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics , 1991 .