Complex Scalar Dark Matter vis-`a-vis CoGeNT, DAMA/LIBRA and XENON100

The CoGeNT and DAMA/LIBRA experiments have found evidence for the spin-independent scattering from nuclei of a light dark matter (DM) particle, 7-12 GeV, which is not excluded by the XENON DM experiments. We show that this putative DM signal can be explained by a complex scalar singlet extension of the standard model (CSM), with a thermal cosmological DM density, and a Higgs sector that is consistent with LEP constraints. We make predictions for the masses, production, and decays of the two Higgs mass eigenstates and describe how the Higgs and DM particles can be discovered at the LHC.

[1]  W. Marsden I and J , 2012 .

[2]  Unlisted,et al.  Fermi LAT Search for Photon Lines from 30 to 200 GeV , 2010 .

[3]  N. Sahu,et al.  Tight connection between direct and indirect detection of dark matter through Higgs portal couplings to a hidden sector , 2010, 1004.3953.

[4]  F. Ling,et al.  Light scalar WIMP through the Higgs portal and CoGeNT , 2010, 1003.2595.

[5]  A. Pierce,et al.  Light neutralinos with large scattering cross sections in the minimal supersymmetric standard model , 2010, 1003.0682.

[6]  A. Ealet,et al.  Search for neutral Higgs bosons decaying into four taus at LEP2 , 2010, 1003.0705.

[7]  D. Hooper,et al.  Implications of CoGeNT and DAMA for Light WIMP Dark Matter , 2010, 1003.0014.

[8]  P. Belli,et al.  New results from DAMA/LIBRA , 2010, 1002.1028.

[9]  J. Chiang,et al.  Fermi large area telescope search for photon lines from 30 to 200 GeV and dark matter implications. , 2010, Physical review letters.

[10]  R. Kitano,et al.  Constraints on Scalar Phantoms , 2010, 1001.0486.

[11]  X. He,et al.  The simplest dark-matter model, CDMS II results, and Higgs detection at LHC , 2009, 0912.4722.

[12]  Implication on Higgs invisible width in light of the new CDMS result , 2009, 0912.4599.

[13]  F. Donato,et al.  Relic neutralinos and the two dark matter candidate events of the CDMS II experiment , 2009, 0912.4025.

[14]  A. Fitzpatrick,et al.  A simple explanation for DAMA with moderate channeling , 2009, 0910.0007.

[15]  A. Semenov,et al.  Dark matter direct detection rate in a generic model with micrOMEGAs_2.2 , 2008, Comput. Phys. Commun..

[16]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[17]  D. Cerdeño,et al.  Right-handed sneutrino dark matter in the NMSSM , 2009, 0903.4677.

[18]  David E. Kaplan,et al.  Asymmetric Dark Matter , 2009, 0901.4117.

[19]  Paul Langacker,et al.  Complex Singlet Extension of the Standard Model , 2008, 0811.0393.

[20]  K. Freese,et al.  Compatibility of DAMA/LIBRA dark matter detection with other searches , 2008, 0808.3607.

[21]  C. Muñoz,et al.  Right-handed sneutrino as thermal dark matter , 2008, 0807.3029.

[22]  G. C. Barbarino,et al.  Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.

[23]  M. Tytgat,et al.  WIMP dark matter, Higgs exchange and DAMA , 2008, 0808.0255.

[24]  H. Murayama,et al.  Unified origin of baryons and dark matter , 2008, 0807.4313.

[25]  K. Cheung,et al.  Production and decays of the light pseudoscalar boson η at the CERN LHC in the simplest little Higgs model , 2008, 0806.4411.

[26]  F. Donato,et al.  Interpreting the recent results on direct searches for dark matter particles in terms of relic neutralinos , 2008, 0806.4099.

[27]  F. Petriello,et al.  DAMA and WIMP dark matter , 2008, 0806.3989.

[28]  W. Keung,et al.  Spin dependence of dark matter scattering , 2008, 0806.1962.

[29]  Univ. Jing Gangshan,et al.  First results from DAMA/LIBRA and the combined results with DAMA/NaI , 2008, 0804.2741.

[30]  J. Gunion,et al.  Nonstandard Higgs Boson Decays , 2008, 0801.4554.

[31]  A. Pilkington,et al.  Reinstating the `no-lose' theorem for NMSSM Higgs discovery at the LHC , 2007, 0712.3510.

[32]  W. Keung,et al.  Monochromatic neutrino signals from dark matter annihilation , 2007, 0709.3301.

[33]  Paul Langacker,et al.  CERN LHC phenomenology of an extended standard model with a real scalar singlet , 2007, 0706.4311.

[34]  W. Keung,et al.  High energy neutrinos from neutralino annihilations in the Sun , 2007, 0708.1325.

[35]  Gabe Shaughnessy,et al.  Singlet Higgs phenomenology and the electroweak phase transition , 2007, 0705.2425.

[36]  K. Matchev,et al.  Inflationary cosmology connecting dark energy and dark matter , 2007, 0704.3285.

[37]  K. Cheung,et al.  Role of h-->etaeta in intermediate-mass Higgs boson searches at the Large Hadron Collider. , 2007, Physical review letters.

[38]  P. Langacker,et al.  Collider Signatures of Singlet Extended Higgs Sectors , 2006, hep-ph/0611239.

[39]  Y. Rozen,et al.  Hiding the Higgs at the LHC , 2006, hep-ph/0611162.

[40]  J. Gunion,et al.  The NMSSM Close to the R-symmetry Limit and Naturalness in h ---> aa Decays for m(a) < 2m(b) , 2006, hep-ph/0611142.

[41]  M. Ramsey-Musolf,et al.  Minimal extension of the standard model scalar sector , 2006, hep-ph/0611014.

[42]  P. Gondolo,et al.  Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model , 2006, hep-ph/0602230.

[43]  G. Farrar,et al.  Dark matter and the baryon asymmetry of the universe. , 2004, Physical review letters.

[44]  T. Montaruli,et al.  Spectra of neutrinos from dark matter annihilations , 2005, hep-ph/0506298.

[45]  F. Halzen,et al.  Physics reach of high-energy and high-statistics icecube atmospheric neutrino data , 2005, hep-ph/0502223.

[46]  H. Logan,et al.  Discovering an invisibly decaying Higgs boson at hadron colliders , 2004, hep-ph/0412269.

[47]  D. Hooper,et al.  Asymmetric sneutrino dark matter and the Ωb/ΩDM puzzle , 2004, hep-ph/0410114.

[48]  G. Gomez-Ceballos,et al.  Searches for invisibly decaying Higgs bosons with the DELPHI detector at LEP , 2004 .

[49]  F. Donato,et al.  Light neutralinos and WIMP direct searches , 2003, hep-ph/0307303.

[50]  P. Ullio,et al.  SUSY dark matter and quintessence , 2003, hep-ph/0309220.

[51]  F. Donato,et al.  Lower bound on the neutralino mass from new data on CMB and implications for relic neutralinos , 2003, hep-ph/0304080.

[52]  F. Rosati Quintessential enhancement of dark matter abundance , 2003, hep-ph/0302159.

[53]  P. Salati Quintessence and the relic density of neutralinos , 2002, astro-ph/0207396.

[54]  Richard J. K. Taylor,et al.  Decay-mode independent searches for new scalar bosons with the OPAL detector at LEP , 2002 .

[55]  D. Hooper,et al.  Indirect search for neutralino dark matter with high energy neutrinos , 2001, hep-ph/0105182.

[56]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[57]  C. Burgess,et al.  The minimal model of nonbaryonic dark matter: A singlet scalar , 2000, hep-ph/0011335.

[58]  D. Zeppenfeld,et al.  Observing an invisible Higgs boson , 2000 .

[59]  J. Ellis,et al.  Re-evaluation of the elastic scattering of supersymmetric dark matter , 2000, hep-ph/0001005.

[60]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[61]  Mcdonald,et al.  Gauge singlet scalars as cold dark matter. , 1994, Physical review. D, Particles and fields.

[62]  Kaplan,et al.  Single explanation for both baryon and dark matter densities. , 1992, Physical review letters.

[63]  P. Gavillet DELPHI Collaboration , 1992 .