PROSPECTS FOR CHARACTERIZING HOST STARS OF THE PLANETARY SYSTEM DETECTIONS PREDICTED FOR THE KOREAN MICROLENSING TELESCOPE NETWORK

I investigate the possibility of constraining the flux of the lens (i.e., host star) for the types of planetary systems the Korean Microlensing Telescope Network is predicted to find. I examine the potential to obtain lens flux measurements by 1) imaging a lens once it is spatially resolved from the source, 2) measuring the elongation of the point spread function of the microlensing target (lens+source) when the lens and source are still unresolved, and 3) taking prompt follow-up photometry. In each case I simulate observing programs for a representative example of current ground-based adaptive optics (AO) facilities (specifically NACO on VLT), future ground-based AO facilities (GMTIFS on GMT), and future space telescopes (NIRCAM on $JWST$). Given the predicted distribution of relative lens-source proper motions, I find that the lens flux could be measured to a precision of $\sigma_{H_{\ell}} \leq 0.1$ for $\gtrsim$60$\%$ of planet detections $\geq$5 years after each microlensing event, for a simulated observing program using GMT that images resolved lenses. NIRCAM on $JWST$ would be able to carry out equivalently high-precision measurements for $\sim$28$\%$ of events $\Delta t$ = 10 years after each event by imaging resolved lenses. I also explore the effects various blend components would have on the mass derived from prompt follow-up photometry, including companions to the lens, companions to the source, and unassociated interloping stars. I find that undetected blend stars would cause catastrophic failures (i.e., $>$50$\%$ fractional uncertainty in the inferred lens mass) for $\lesssim$(16$\cdot f_{\rm bin})\%$ of planet detections, where $f_{\rm bin}$ is the binary fraction, with the majority of these failures occurring for host stars with mass $\lesssim$0.3$M_{\odot}$.

[1]  S Ida,et al.  Toward a Deterministic Model of Planetary Formation. III. Mass Distribution of Short-Period Planets around Stars of Various Masses , 2005 .

[2]  A. Udalski,et al.  MOA-2011-BLG-293LB: FIRST MICROLENSING PLANET POSSIBLY IN THE HABITABLE ZONE , 2013, 1310.3706.

[3]  B. Monard,et al.  A COLD NEPTUNE-MASS PLANET OGLE-2007-BLG-368Lb: Cold neptunes are common , 2009, 0912.1171.

[4]  Jack J. Lissauer,et al.  Timescales for planetary accretion and the structure of the protoplanetary disk , 1986 .

[5]  A. Gould,et al.  The Mass Spectrum Of Machos From Parallax Measurements , 1994, astro-ph/9409036.

[6]  C. D. Laney,et al.  A new LMC K-band distance from precision measurements of nearby red clump stars , 2011, 1109.4800.

[7]  Andrew Gould,et al.  Microlens Masses from 1-D Parallaxes and Heliocentric Proper Motions , 2014, 1408.0797.

[8]  OGLE-2005-BLG-071Lb, THE MOST MASSIVE M DWARF PLANETARY COMPANION? , 2008, 0804.1354.

[9]  Y. Watase,et al.  Real-time difference imaging analysis of moa galactic bulge observations during 2000 , 2001 .

[10]  Debra A. Fischer,et al.  Multiplicity among M Dwarfs , 1992 .

[11]  Cheongho Han,et al.  Properties of Planetary Caustics in Gravitational Microlensing , 2005, astro-ph/0510206.

[12]  Byeong-Gon Park,et al.  Properties of Central Caustics in Planetary Microlensing , 2005, astro-ph/0505363.

[13]  Stellar Multiplicity and the Initial Mass Function: Most Stars Are Single , 2006, astro-ph/0601375.

[14]  K. Zebrun,et al.  OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event , 2004 .

[15]  Kevin Krisciunas,et al.  A MODEL OF THE BRIGHTNESS OF MOONLIGHT , 1991 .

[16]  Sang-Mok Cha,et al.  Prototype enclosure design for the Korea Microlensing Telescope Network (KMTNet) , 2012, Other Conferences.

[17]  C. H. Ling,et al.  INTERPRETATION OF A SHORT-TERM ANOMALY IN THE GRAVITATIONAL MICROLENSING EVENT MOA-2012-BLG-486 , 2013, 1308.5762.

[18]  B. Monard,et al.  MOA-2009-BLG-387Lb: a massive planet orbiting an M dwarf , 2011, 1102.0558.

[19]  F. Allard,et al.  Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages , 2002 .

[20]  Scott J. Kenyon,et al.  Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets , 2007, 0710.1065.

[21]  T. A. Lister,et al.  RoboNet-II: Follow-up observations of microlensing events with a robotic network of telescopes , 2008, 0808.0813.

[22]  Andrew Gould,et al.  REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S RV ∼ 2.5 EXTINCTION CURVE , 2012, 1208.1263.

[23]  B. Monard,et al.  SUB-SATURN PLANET MOA-2008-BLG-310Lb: LIKELY TO BE IN THE GALACTIC BULGE , 2009, 0908.0529.

[24]  K. Masuda,et al.  Ju l 2 00 2 Microlensing optical depth towards the Galactic bulge from MOA observations during 2000 with Difference Image Analysis , 2006 .

[25]  S. Parcell,et al.  GMT integral-field spectrograph (GMTIFS) conceptual design , 2012, Other Conferences.

[26]  Zheng Zheng,et al.  M Dwarfs from Hubble Space Telescope Star Counts. V. The I-Band Luminosity Function , 2003, astro-ph/0308359.

[27]  Identification of the OGLE-2003-BLG-235/MOA-2003-BLG-53 Planetary Host Star* , 2006, astro-ph/0606038.

[28]  S. Majewski,et al.  LIFTING THE DUSTY VEIL WITH NEAR- AND MID-INFRARED PHOTOMETRY. III. TWO-DIMENSIONAL EXTINCTION MAPS OF THE GALACTIC MIDPLANE USING THE RAYLEIGH–JEANS COLOR EXCESS METHOD , 2012, 1206.5799.

[29]  Sang-Mok Cha,et al.  Design of the KMTNet large format CCD camera , 2012, Other Conferences.

[30]  K. Ulaczyk,et al.  Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common , 2006 .

[31]  A. Gould,et al.  Statistics of Microlensing Optical Depth , 1994, astro-ph/9410052.

[32]  B. Scott Gaudi,et al.  OPTIMAL SURVEY STRATEGIES AND PREDICTED PLANET YIELDS FOR THE KOREAN MICROLENSING TELESCOPE NETWORK , 2014, 1406.2316.

[33]  Resolving the Microlens Mass Degeneracy for Earth-Mass Planets , 2003, astro-ph/0304314.

[34]  Steven R. Majewski,et al.  LIFTING THE DUSTY VEIL WITH NEAR- AND MID-INFRARED PHOTOMETRY. I. DESCRIPTION AND APPLICATIONS OF THE RAYLEIGH–JEANS COLOR EXCESS METHOD , 2011, 1106.2542.

[35]  K. Ulaczyk,et al.  The Second Multiple-planet System Discovered by Microlensing: OGLE-2012-BLG-0026Lb, c—A Pair of Jovian Planets beyond the Snow Line , 2013 .

[36]  Ho Jin,et al.  Wide-field telescope design for the KMTNet project , 2011, Optical Engineering + Applications.

[37]  MEASURING THE REMNANT MASS FUNCTION OF THE GALACTIC BULGE , 1999, astro-ph/9906472.

[38]  Sang-Mok Cha,et al.  Design and fabrication of three 1.6-meter telescopes for the Korea Microlensing Telescope Network (KMTNet) , 2012, Other Conferences.

[39]  K. Ulaczyk,et al.  One or more bound planets per Milky Way star from microlensing observations , 2012, Nature.

[40]  A. Udalski The Optical Gravitational Lensing Experiment . Real Time Data Analysis Systems in the OGLE-III Survey , 2004 .

[41]  K. Ulaczyk,et al.  CANDIDATE GRAVITATIONAL MICROLENSING EVENTS FOR FUTURE DIRECT LENS IMAGING , 2014, 1403.3092.

[42]  Jae Woo Lee,et al.  Technical specifications of the KMTNet observation system , 2010, Astronomical Telescopes + Instrumentation.

[43]  B. Monard,et al.  THE EXTREME MICROLENSING EVENT OGLE-2007-BLG-224: TERRESTRIAL PARALLAX OBSERVATION OF A THICK-DISK BROWN DWARF , 2009, 0904.0249.

[44]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[45]  The Luminosity Function and Initial Mass Function in the Galactic Bulge , 1998, astro-ph/9801321.

[46]  A. Gal-Yam,et al.  MOA-2011-BLG-293Lb: A TEST OF PURE SURVEY MICROLENSING PLANET DETECTIONS , 2012, 1201.1002.

[47]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[48]  EXPECTATIONS FROM A MICROLENSING SEARCH FOR PLANETS , 1996, astro-ph/9612062.

[49]  K. Ulaczyk,et al.  A terrestrial planet in a ~1-AU orbit around one member of a ∼15-AU binary , 2014, Science.

[50]  A. Gould,et al.  MICROLENSING EVENTS : THIN DISK, THICK DISK, OR HALO ? , 1994 .

[51]  B. Scott Gaudi,et al.  Characterization of Gravitational Microlensing Planetary Host Stars , 2007 .