Enhancing Slice-based Visualizations of Medical Volume Data

Slice-based visualizations of CT and MRI data are frequently used for diagnosis, intervention planning and intraoperative navigation since they allow a precise analysis and localization. We present new techniques to enhance the visualization of cross sectional medical image data. Our work is focussed on intervention planning and intraoperative navigation. We address the following problems of slice-based visualization in these areas: the lack of a graphical overview on the positions of anatomic structures, the localization of a target structure and the display of safety zones around pathologic structures. To improve the overview, we introduce LIFTCHARTs, attached as vertical bars to a slice-based visualization. For localizing target structures, we introduce halos. These techniques restrict the occlusion of the original data to a minimum and avoid any modification of the original data. To demonstrate the usability of these visualization techniques, we show two application scenarios in which the techniques come into operation.

[1]  Gabriele Lohmann,et al.  Volumetric image analysis , 1998 .

[2]  K. Inamura,et al.  Resection Proposals for Oncologic Liver Surgery based on Vascular Territories , 2002 .

[3]  Patrick Baudisch,et al.  Halo: a Technique for Visualizing Off-Screen Locations , 2003 .

[4]  Wolfgang Birkfellner,et al.  A head-mounted operating binocular for augmented reality visualization in medicine - design and initial evaluation , 2002, IEEE Transactions on Medical Imaging.

[5]  Ben Shneiderman,et al.  LifeLines: visualizing personal histories , 1996, CHI.

[6]  Bernhard Preim,et al.  Pre-operative segmentation of neck CT datasets for the planning of neck dissections , 2006, SPIE Medical Imaging.

[7]  Lukas Mroz,et al.  STEPS - an application for simulation of transsphenoidal endonasal pituitary surgery , 2004, IEEE Visualization 2004.

[8]  K Koulechov,et al.  Navigated control in functional endoscopic sinus surgery , 2005, The international journal of medical robotics + computer assisted surgery : MRCAS.

[9]  Wolfgang Birkfellner,et al.  The Varioscope AR - A Head-Monted Operating Microscope for Augmented Reality , 2000, MICCAI.

[10]  A K Banerjee VOXEL-MAN 3D-Navigator. Brain and skull. Regional, functional and radiological anatomy (2nd edn). CD-ROM. By K-H Höhne et al, 2001 (Springer-Verlag, Heidelberg), £56.40 ISBN 3-540-14910-4 , 2002 .

[11]  Ulrich Seifert,et al.  Clinical and experimental evaluation of an augmented reality system in cranio-maxillofacial surgery , 2005 .

[12]  Patrick Baudisch,et al.  Halo: a technique for visualizing off-screen objects , 2003, CHI '03.

[13]  W. Eric L. Grimson,et al.  An Integrated Visualization System for Surgical Planning and Guidance Using Image Fusion and Interventional Imaging , 1999, MICCAI.

[14]  H P Meinzer,et al.  The impact of 3-dimensional reconstructions on operation planning in liver surgery. , 2000, Archives of surgery.

[15]  David S. Ebert,et al.  Example-based volume illustrations , 2005, VIS 05. IEEE Visualization, 2005..

[16]  Bernhard Preim,et al.  Bildanalyse und Visualisierung für die Planung von Nasennebenhöhlen-Operationen , 2004, Bildverarbeitung für die Medizin.

[17]  Bernhard Preim,et al.  Interactive Visualization for Neck-Dissection Planning , 2005, EuroVis.

[18]  Ben Shneiderman,et al.  LifeLines: using visualization to enhance navigation and analysis of patient records , 1998, AMIA.

[19]  Bernhard Preim,et al.  Resection proposals for oncologic liver surgery based on vascular territories , 2002 .

[20]  M. Eric Gershwin,et al.  Diseases of the Sinuses , 1996, Humana Press.