Variational Gaussian-process factor analysis for modeling spatio-temporal data
暂无分享,去创建一个
[1] Charles M. Bishop. Variational principal components , 1999 .
[2] Harri Valpola,et al. Denoising Source Separation , 2005, J. Mach. Learn. Res..
[3] David Parker,et al. Interdecadal changes of surface temperature since the late nineteenth century , 1994 .
[4] Yee Whye Teh,et al. Semiparametric latent factor models , 2005, AISTATS.
[5] Mikkel N. Schmidt,et al. Nonnegative Matrix Factorization with Gaussian Process Priors , 2008, Comput. Intell. Neurosci..
[6] John P. Cunningham,et al. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity , 2008, NIPS.
[7] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[8] Mike Rees,et al. 5. Statistics for Spatial Data , 1993 .
[9] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[10] Noel A Cressie,et al. Statistics for Spatial Data. , 1992 .
[11] Balaji Rajagopalan,et al. Analyses of global sea surface temperature 1856–1991 , 1998 .
[12] Eric Moulines,et al. A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..
[13] Neil D. Lawrence,et al. Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.
[14] Mikkel N. Schmidt. Function factorization using warped Gaussian processes , 2009, ICML '09.
[15] Alexander Ilin,et al. Bayesian PCA for reconstruction of historical sea surface temperatures , 2009, 2009 International Joint Conference on Neural Networks.
[16] Michael E. Tipping,et al. Probabilistic Principal Component Analysis , 1999 .
[17] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.