Variational Gaussian-process factor analysis for modeling spatio-temporal data

We present a probabilistic factor analysis model which can be used for studying spatio-temporal datasets. The spatial and temporal structure is modeled by using Gaussian process priors both for the loading matrix and the factors. The posterior distributions are approximated using the variational Bayesian framework. High computational cost of Gaussian process modeling is reduced by using sparse approximations. The model is used to compute the reconstructions of the global sea surface temperatures from a historical dataset. The results suggest that the proposed model can outperform the state-of-the-art reconstruction systems.

[1]  Charles M. Bishop Variational principal components , 1999 .

[2]  Harri Valpola,et al.  Denoising Source Separation , 2005, J. Mach. Learn. Res..

[3]  David Parker,et al.  Interdecadal changes of surface temperature since the late nineteenth century , 1994 .

[4]  Yee Whye Teh,et al.  Semiparametric latent factor models , 2005, AISTATS.

[5]  Mikkel N. Schmidt,et al.  Nonnegative Matrix Factorization with Gaussian Process Priors , 2008, Comput. Intell. Neurosci..

[6]  John P. Cunningham,et al.  Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity , 2008, NIPS.

[7]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[8]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[9]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[10]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[11]  Balaji Rajagopalan,et al.  Analyses of global sea surface temperature 1856–1991 , 1998 .

[12]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[13]  Neil D. Lawrence,et al.  Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.

[14]  Mikkel N. Schmidt Function factorization using warped Gaussian processes , 2009, ICML '09.

[15]  Alexander Ilin,et al.  Bayesian PCA for reconstruction of historical sea surface temperatures , 2009, 2009 International Joint Conference on Neural Networks.

[16]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[17]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.