Hierarchical porous NiCo2O4 nanomaterials with excellent cycling behavior for electrochemical capacitors via a hard-templating route

[1]  Chunzhong Li,et al.  Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. , 2012, Chemical communications.

[2]  Xiong Zhang,et al.  Facile and low-cost fabrication of nanostructured NiCo2O4 spinel with high specific capacitance and excellent cycle stability , 2012 .

[3]  X. Chen,et al.  Sol―gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors , 2011 .

[4]  Zhongai Hu,et al.  Design and synthesis of NiCo2O4–reduced graphene oxide composites for high performance supercapacitors , 2011 .

[5]  Heejoon Ahn,et al.  Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications , 2011 .

[6]  S. G. Kandalkar,et al.  Preparation and characterization of the electrodeposited Ni-Co oxide thin films for electrochemical capacitors , 2011 .

[7]  Jingguang G. Chen,et al.  Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. , 2010, Angewandte Chemie.

[8]  Shuli Chen,et al.  Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam , 2010 .

[9]  G. R. Rao,et al.  Tuning of Capacitance Behavior of NiO Using Anionic, Cationic, and Nonionic Surfactants by Hydrothermal Synthesis , 2010 .

[10]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[11]  Shih‐Yuan Lu,et al.  A Cost‐Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide‐Driven Sol–Gel Process , 2010, Advanced materials.

[12]  E. Rossinyol,et al.  Mesoporous NiCo2O4 Spinel: Influence of Calcination Temperature over Phase Purity and Thermal Stability , 2009 .

[13]  Xiaogang Zhang,et al.  Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors , 2009 .

[14]  Shih‐Yuan Lu,et al.  Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route , 2009 .

[15]  Yitai Qian,et al.  Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. , 2009, Chemistry.

[16]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[17]  S. Ogale,et al.  Nearly Monodispersed Multifunctional NiCo2O4 Spinel Nanoparticles : Magnetism, Infrared Transparency, and Radiofrequency Absorption , 2008 .

[18]  Milin Zhang,et al.  Hydrous–ruthenium–oxide thin film electrodes prepared by cathodic electrodeposition for supercapacitors , 2008 .

[19]  Chi-Chang Hu,et al.  The Synergistic Influences of OH − Concentration and Electrolyte Conductivity on the Redox Behavior of Ni ( OH ) 2 / NiOOH , 2008 .

[20]  Hong Lin,et al.  Core–Ring Structured NiCo2O4 Nanoplatelets: Synthesis, Characterization, and Electrocatalytic Applications , 2008 .

[21]  Xiaogang Zhang,et al.  Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors , 2008 .

[22]  T. Mallouk,et al.  Soft Chemical Conversion of Layered Double Hydroxides to Superparamagnetic Spinel Platelets , 2008 .

[23]  Xiaogang Zhang,et al.  NiO loaded on hydrothermally treated mesocarbon microbeads (h-MCMB) and their supercapacitive behaviors , 2008 .

[24]  Mao-wen Xu,et al.  Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route , 2008 .

[25]  Hu-lin Li,et al.  Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors , 2008 .

[26]  Chi-Chang Hu,et al.  Textural and electrochemical characterization of porous carbon nanofibers as electrodes for supercapacitors , 2007 .

[27]  Chi-Chang Hu,et al.  Textural and capacitive characteristics of hydrothermally derived RuO2·xH2O nanocrystallites : Independent control of crystal size and water content , 2007 .

[28]  Jixue Li,et al.  Ordered mesoporous copper oxide with crystalline walls. , 2007, Angewandte Chemie.

[29]  Ning Pan,et al.  Supercapacitors using carbon nanotubes films by electrophoretic deposition , 2006 .

[30]  Taeghwan Hyeon,et al.  Recent Progress in the Synthesis of Porous Carbon Materials , 2006 .

[31]  Shuren Zhang,et al.  Synthesis and characterization of aerogel-like mesoporous nickel oxide for electrochemical supercapacitors , 2006 .

[32]  Mao-wen Xu,et al.  Synthesis and characterization of mesoporous nickel oxide for electrochemical capacitor , 2006 .

[33]  Prashant N. Kumta,et al.  Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors , 2006 .

[34]  D. Zhao,et al.  "Host-guest" chemistry in the synthesis of ordered nonsiliceous mesoporous materials. , 2006, Accounts of chemical research.

[35]  B. Su,et al.  Insights into hierarchically meso–macroporous structured materials , 2006 .

[36]  P. Ajayan,et al.  Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. , 2005, The journal of physical chemistry. B.

[37]  W. Jaegermann,et al.  Photoelectron Spectroscopic Study of the Reaction of Li and Na with NiCo2O4 , 2005 .

[38]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[39]  F. Schüth,et al.  Weakly Ferromagnetic Ordered Mesoporous Co3O4 Synthesized by Nanocasting from Vinyl‐Functionalized Cubic Ia3d Mesoporous Silica , 2005 .

[40]  Chi-Chang Hu,et al.  Effects of Electrochemical Activation and Multiwall Carbon Nanotubes on the Capacitive Characteristics of Thick MnO2 Deposits , 2004 .

[41]  G. Lu,et al.  Synthesis and electrochemical properties of mesoporous nickel oxide , 2004 .

[42]  Wen-Ta Tsai,et al.  Manganese oxide/carbon composite electrodes for electrochemical capacitors , 2004 .

[43]  Yongsheng Han,et al.  Effect of temperature on the preparation and electrocatalytic properties of a spinel NiCo2O4/Ni electrode , 2004 .

[44]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[45]  M. Langell,et al.  Analysis of the NiCo2O4 spinel surface with Auger and X-ray photoelectron spectroscopy , 2000 .

[46]  J. L. Gautier,et al.  Characterization of the Nickel Cobaltite, NiCo2O4, Prepared by Several Methods: An XRD, XANES, EXAFS, and XPS Study , 2000 .

[47]  Venkat Srinivasan,et al.  Studies on the Capacitance of Nickel Oxide Films: Effect of Heating Temperature and Electrolyte Concentration , 2000 .

[48]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[49]  K. Gubbins,et al.  Pore size distribution analysis of microporous carbons: a density functional theory approach , 1993 .

[50]  A. Brinkman,et al.  X-ray photoelectron spectroscopy of nickel manganese oxide thermistors , 1992 .

[51]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[52]  G. Lu,et al.  3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. , 2008, Angewandte Chemie.

[53]  Bozhi Tian,et al.  Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. , 2004, Journal of the American Chemical Society.

[54]  Marc A. Anderson,et al.  Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors , 1996 .

[55]  P. Peshev,et al.  Preparation of high-dispersity MCo2O4 (M = Mg, Ni, Zn) spinels by thermal dissociation of coprecipitated oxalates , 1989 .