Determination and reduction of translocator protein (TSPO) ligand rs6971 discrimination† †The authors declare no competing interests.

The 18 kDa translocator protein (TSPO) is a target for development of diagnostic imaging agents for glioblastoma and neuroinflammation.

[1]  Roger N Gunn,et al.  Neuroinflammation in treated HIV-positive individuals , 2016, Neurology.

[2]  W. Walsh,et al.  PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells , 2016, Proceedings of the National Academy of Sciences.

[3]  Adriaan A Lammertsma,et al.  Imaging of neuroinflammation in Alzheimer's disease, multiple sclerosis and stroke: Recent developments in positron emission tomography. , 2016, Biochimica et biophysica acta.

[4]  F. Da Settimo,et al.  TSPO ligand residence time: a new parameter to predict compound neurosteroidogenic efficacy , 2016, Scientific Reports.

[5]  Kanako Morohaku,et al.  Mitochondrial Translocator Protein (TSPO) Function Is Not Essential for Heme Biosynthesis* , 2015, The Journal of Biological Chemistry.

[6]  F. Turkheimer,et al.  Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington's disease gene carriers , 2015, Neurobiology of Disease.

[7]  R. Martins,et al.  First Demonstration of Positive Allosteric-like Modulation at the Human Wild Type Translocator Protein (TSPO). , 2015, Journal of Medicinal Chemistry.

[8]  Yiyun Huang,et al.  Imaging robust microglial activation after lipopolysaccharide administration in humans with PET , 2015, Proceedings of the National Academy of Sciences.

[9]  C. Svarer,et al.  TSPO Imaging in Glioblastoma Multiforme: A Direct Comparison Between 123I-CLINDE SPECT, 18F-FET PET, and Gadolinium-Enhanced MR Imaging , 2015, The Journal of Nuclear Medicine.

[10]  Kimberly J. Jenko,et al.  Neuroinflammation in Temporal Lobe Epilepsy Measured Using Positron Emission Tomographic Imaging of Translocator Protein. , 2015, JAMA neurology.

[11]  M. Kassiou,et al.  TSPO as a target for glioblastoma therapeutics. , 2015, Biochemical Society transactions.

[12]  F. Da Settimo,et al.  TSPO ligand residence time influences human glioblastoma multiforme cell death/life balance , 2015, Apoptosis.

[13]  R. Garavito,et al.  Crystal structures of translocator protein (TSPO) and mutant mimic of a human polymorphism , 2015, Science.

[14]  David Zahra,et al.  Positron emission tomography and functional characterization of a complete PBR/TSPO knockout , 2014, Nature Communications.

[15]  Dewei Tang,et al.  Facile synthesis of SSR180575 and discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[(18)F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide, a potent pyridazinoindole ligand for PET imaging of TSPO in cancer. , 2014, Bioorganic & medicinal chemistry letters.

[16]  Dewei Tang,et al.  Preclinical Imaging Evaluation of Novel TSPO-PET Ligand 2-(5,7-Diethyl-2-(4-(2-[18F]fluoroethoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide ([18F]VUIIS1008) in Glioma , 2014, Molecular Imaging and Biology.

[17]  S. Becker,et al.  Structure of the Mitochondrial Translocator Protein in Complex with a Diagnostic Ligand , 2014, Science.

[18]  Barbara Costa,et al.  Structure-activity relationship refinement and further assessment of 4-phenylquinazoline-2-carboxamide translocator protein ligands as antiproliferative agents in human glioblastoma tumors. , 2014, Journal of medicinal chemistry.

[19]  W. Wong,et al.  Macroglia-Microglia Interactions via TSPO Signaling Regulates Microglial Activation in the Mouse Retina , 2014, The Journal of Neuroscience.

[20]  J. Rinne,et al.  Detection of Microglial Activation in an Acute Model of Neuroinflammation Using PET and Radiotracers 11C-(R)-PK11195 and 18F-GE-180 , 2014, The Journal of Nuclear Medicine.

[21]  Philippe Hantraye,et al.  Reactive Astrocytes Overexpress TSPO and Are Detected by TSPO Positron Emission Tomography Imaging , 2012, The Journal of Neuroscience.

[22]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[23]  M. Kassiou,et al.  Is there any correlation between binding and functional effects at the translocator protein (TSPO) (18 kDa)? , 2012, Current molecular medicine.

[24]  C. Martini,et al.  Evidence for complex binding profiles and species differences at the translocator protein (TSPO) (18 kDa). , 2012, Current molecular medicine.

[25]  Jürgen Götz,et al.  Tau-Mediated Nuclear Depletion and Cytoplasmic Accumulation of SFPQ in Alzheimer's and Pick's Disease , 2012, PloS one.

[26]  Roger N Gunn,et al.  An 18-kDa Translocator Protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28 , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[27]  R. Rupprecht,et al.  Variation in binding affinity of the novel anxiolytic XBD173 for the 18 kDa translocator protein in human brain , 2011, Synapse.

[28]  Robert B. Innis,et al.  Mixed-Affinity Binding in Humans with 18-kDa Translocator Protein Ligands , 2011, The Journal of Nuclear Medicine.

[29]  Roger N Gunn,et al.  Two Binding Sites for [3H]PBR28 in Human Brain: Implications for TSPO PET Imaging of Neuroinflammation , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[30]  J. Götz,et al.  Gateway-compatible lentiviral transfer vectors for ubiquitin promoter driven expression of fluorescent fusion proteins. , 2010, Plasmid.

[31]  M. Pomper,et al.  Initial Evaluation of 11C-DPA-713, a Novel TSPO PET Ligand, in Humans , 2009, Journal of Nuclear Medicine.

[32]  B. Gulyás,et al.  A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system , 2009, Neurochemistry International.

[33]  C. Martini,et al.  PK 11195 differentially affects cell survival in human wild‐type and 18 kDa translocator protein‐silenced ADF astrocytoma cells , 2008, Journal of cellular biochemistry.

[34]  Hervé Boutin,et al.  Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[35]  M. Gavish,et al.  Ligands of the Mitochondrial 18 kDa Translocator Protein Attenuate Apoptosis of Human Glioblastoma Cells Exposed to Erucylphosphohomocholine , 2008, Cellular oncology : the official journal of the International Society for Cellular Oncology.

[36]  Tetsuya Suhara,et al.  Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor , 2007, Brain Research.

[37]  D. Nutt,et al.  Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. , 2006, Trends in pharmacological sciences.

[38]  J. Soustiel,et al.  Immunohistochemical expression of peripheral benzodiazepine receptors in human astrocytomas and its correlation with grade of malignancy, proliferation, apoptosis and survival , 2006, Journal of Neuro-Oncology.

[39]  L. Ittner,et al.  The N-terminal extracellular domain 23-60 of the calcitonin receptor-like receptor in chimeras with the parathyroid hormone receptor mediates association with receptor activity-modifying protein 1. , 2005, Biochemistry.

[40]  L. Ittner,et al.  Selective Inactivation of Adrenomedullin over Calcitonin Gene-related Peptide Receptor Function by the Deletion of Amino Acids 14-20 of the Mouse Calcitonin-like Receptor* , 2004, Journal of Biological Chemistry.

[41]  E. Hamel,et al.  Assessment of the peripheral benzodiazepine receptors in human gliomas by two methods , 1998, Journal of Neuro-Oncology.

[42]  G. Campiani,et al.  Antiproliferative action of pyrrolobenzoxazepine derivatives in cultured cells: absence of correlation with binding to the peripheral-type benzodiazepine binding site. , 1998, Biochemical pharmacology.

[43]  V. Papadopoulos,et al.  Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis , 1997, Steroids.

[44]  H. Kohno,et al.  Involvement of peripheral-type benzodiazepine receptors in the intracellular transport of heme and porphyrins. , 1995, Journal of biochemistry.

[45]  C Crouzel,et al.  PET study of carbon-11-PK 11195 binding to peripheral type benzodiazepine sites in glioblastoma: a case report. , 1991, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[46]  J. Kononen,et al.  Expression of peripheral-type benzodiazepine receptor and diazepam binding inhibitor in human astrocytomas: relationship to cell proliferation. , 1995, Cancer research.