Solid Deuterium-Tritium Surface Roughness In A Beryllium Inertial Confinement Fusion Shell

Solid deuterium-tritium (D-T) fuel layers for inertial confinement fusion experiments were formed inside of a 2 mm diameter beryllium shell and were characterized using phase-contrast enhanced x-ray imaging. The solid D-T surface roughness is found to be 0.4 {micro}m for modes 7-128 at 1.5 K below the melting temperature. The layer roughness is found to increase with decreasing temperature, in agreement with previous visible light characterization studies. However, phase-contrast enhanced x-ray imaging provides a more robust surface roughness measurement than visible light methods. The new x-ray imaging results demonstrate clearly that the surface roughness decreases with time for solid D-T layers held at 1.5 K below the melting temperature.

[1]  K. Nugent,et al.  Quantitative Phase Imaging Using Hard X Rays. , 1996, Physical review letters.

[2]  E. Mapoles,et al.  Smoothing of deuterium-tritium ice by electrical heating of the saturated vapor , 1997 .

[3]  P. Cloetens,et al.  Phase objects in synchrotron radiation hard x-ray imaging , 1996 .

[4]  R. B. Jacobs,et al.  Beta energy driven uniform deuterium--tritium ice layer in reactor-size cryogenic inertial fusion targets , 1988 .

[5]  A. Snigirev,et al.  On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation , 1995 .

[6]  S. Wilkins,et al.  Contrast and resolution in imaging with a microfocus x-ray source , 1997 .

[7]  J. Hoffer,et al.  Radioactively induced sublimation in solid tritium. , 1988, Physical review letters.

[8]  J. Hoffer,et al.  Uniform solid deuterium–tritium fuel layers resulting from radioactively induced sublimation , 1989 .

[9]  K. Nugent,et al.  Noninterferometric phase imaging with partially coherent light , 1998 .

[10]  E. Mapoles,et al.  Surface roughness measurements of beta-layered solid deuterium-tritium in toroidal geometries , 1996 .

[11]  Timur E. Gureyev,et al.  On x-ray phase imaging with a point source , 1998 .

[12]  Jeffrey A. Koch,et al.  Quantitative Analysis of Backlit Shadowgraphy as a Diagnostic of Hydrogen Ice Surface Quality in ICF Capsules , 2000 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  S. Wilkins,et al.  Hard x-ray quantitative non-interferometric phase-contrast microscopy , 1999 .

[15]  Stephan A. Letts,et al.  Forming uniform HD layers in shells using infrared radiation , 1998 .

[16]  Gilbert W. Collins,et al.  Numerical Raytrace Verification of Optical Diagnostics of Ice Surface Roughness for Inertial Confinement Fusion Experiments , 2003 .

[17]  Thomas J. Asaki,et al.  Ultrasonic vibration modal analysis of ICF targets using a photorefractive optical lock-in , 1998, Smart Structures.

[18]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[19]  Richard J. Fitzgerald,et al.  Phase‐Sensitive X‐Ray Imaging , 2000 .

[20]  Dan J. Thoma,et al.  The development and advantages of beryllium capsules for the National Ignition Facility , 1998 .

[21]  J. Pipes,et al.  Cryogenic D-T fuel layers formed in 1 mm spheres by beta-layering , 1997 .

[22]  S. Wilkins,et al.  Phase-contrast imaging using polychromatic hard X-rays , 1996, Nature.

[23]  V. A. Bushuev,et al.  Wave-optical description of X-ray phase contrast images of weakly absorbing non-crystalline objects , 1997 .

[24]  R. Cook,et al.  Sputter-deposited Be ablators for NIF target capsules , 1997 .

[25]  T. Asaki,et al.  Ultrasonic Characterization of Inertial Confinement Fusion Targets , 1998 .

[26]  S. Wilkins,et al.  X-ray phase-contrast microscopy and microtomography. , 2003, Optics express.

[27]  K. Nugent,et al.  Noninterferometric quantitative phase imaging with soft x rays. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Kamel Fezzaa,et al.  Quantitative characterization of inertial confinement fusion capsules using phase contrast enhanced x-ray imaging , 2005 .

[29]  S W Haan,et al.  Update on Ignition Target Fabrication Specifications , 2002 .

[30]  S. Skupsky,et al.  First results from cryogenic target implosions on OMEGA , 2002 .

[31]  Gilbert W. Collins,et al.  Generating Low-Temperature Layers with Infrared Heating , 2003 .

[32]  P. Walsh,et al.  Characterization of National Ignitition Facility cryogenic beryllium capsules using x-ray phase contrast imaging , 2004 .

[33]  Richard A. London,et al.  X-Ray Imaging Of Cryogenic Deuterium-Tritium Layers In A Beryllium Shell , 2005 .