Global localization of 3D anatomical structures by pre-filtered Hough Forests and discrete optimization

Graphical abstract Highlights ► Automatic localization of landmarks in complex, repetitive anatomical structures. ► Random Forest classifiers for every landmark as a pre-filtering stage. ► Hough regression model for refining the landmark candidate positions. ► Parts-based model of global landmark topology to select the final landmark positions. ► Results on three challenging data sets, median residuals of 0.80 mm, 1.19 mm, 2.71 mm.

[1]  Rachid Deriche,et al.  A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape , 2007, International Journal of Computer Vision.

[2]  Zhuowen Tu,et al.  Auto-Context and Its Application to High-Level Vision Tasks and 3D Brain Image Segmentation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Toby Sharp,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR.

[5]  Dorin Comaniciu,et al.  Marginal Space Learning for Efficient Detection of 2D/3D Anatomical Structures in Medical Images , 2009, IPMI.

[6]  Peter Widhalm,et al.  Automatic assessment of the knee alignment angle on full-limb radiographs. , 2010, European journal of radiology.

[7]  Toby Sharp,et al.  Implementing Decision Trees and Forests on a GPU , 2008, ECCV.

[8]  Antonio Criminisi,et al.  Decision Forests with Long-Range Spatial Context for Organ Localization in CT Volumes , 2009 .

[9]  Yvan Petit,et al.  Assessment of Spinal Flexibility in Adolescent Idiopathic Scoliosis: Suspension Versus Side-Bending Radiography , 2009, Spine.

[10]  Song Wang,et al.  Automatic localization of solid organs on 3D CT images by a collaborative majority voting decision based on ensemble learning , 2012, Comput. Medical Imaging Graph..

[11]  Horst Bischof,et al.  Sparse MRF Appearance Models for Fast Anatomical Structure Localisation , 2007, BMVC.

[12]  Marleen de Bruijne,et al.  Shape Particle Filtering for Image Segmentation , 2004, MICCAI.

[13]  Martin Roberts,et al.  Vertebral Morphometry: Semiautomatic Determination of Detailed Shape From Dual-Energy X-ray Absorptiometry Images Using Active Appearance Models , 2006, Investigative radiology.

[14]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[15]  Georg Langs,et al.  A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation , 2014, Medical Image Anal..

[16]  Vincent Lepetit,et al.  Keypoint recognition using randomized trees , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Horst Bischof,et al.  Localization of 3D Anatomical Structures Using Random Forests and Discrete Optimization , 2010, MCV.

[18]  Dorin Comaniciu,et al.  Detection of 3D Spinal Geometry Using Iterated Marginal Space Learning , 2010, MCV.

[19]  Ullrich Köthe,et al.  On Oblique Random Forests , 2011, ECML/PKDD.

[20]  Dimitris N. Metaxas,et al.  Entangled Decision Forests and Their Application for Semantic Segmentation of CT Images , 2011, IPMI.

[21]  Horst Bischof,et al.  Object Localization Based on Markov Random Fields and Symmetry Interest Points , 2007, MICCAI.

[22]  Horst Bischof,et al.  Generalized sparse MRF appearance models , 2010, Image Vis. Comput..

[23]  Kunio Doi,et al.  Computer-aided diagnosis in medical imaging: Historical review, current status and future potential , 2007, Comput. Medical Imaging Graph..

[24]  Antonio Criminisi,et al.  Fast Multiple Organ Detection and Localization in Whole-Body MR Dixon Sequences , 2011, MICCAI.

[25]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[26]  Franz Kainberger,et al.  Automatic Quantification of Joint Space Narrowing and Erosions in Rheumatoid Arthritis , 2009, IEEE Transactions on Medical Imaging.

[27]  Timothy F. Cootes,et al.  Active Appearance Models , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Ullrich Köthe,et al.  An Empirical Comparison of Inference Algorithms for Graphical Models with Higher Order Factors Using OpenGM , 2010, DAGM-Symposium.

[29]  Andrew W. Fitzgibbon,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR 2011.

[30]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[32]  Juergen Gall,et al.  Class-specific Hough forests for object detection , 2009, CVPR.

[33]  Antonio Criminisi,et al.  Regression Forests for Efficient Anatomy Detection and Localization in CT Studies , 2010, MCV.

[34]  Tomás Pajdla,et al.  Multi-label image segmentation via max-sum solver , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Sebastian P. M. Dries,et al.  Spine Detection and Labeling Using a Parts-Based Graphical Model , 2007, IPMI.

[36]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  L. Sharma,et al.  Full-limb and knee radiography assessments of varus-valgus alignment and their relationship to osteoarthritis disease features by magnetic resonance imaging. , 2007, Arthritis and rheumatism.

[38]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[39]  Christoph Schnörr,et al.  A Study of Parts-Based Object Class Detection Using Complete Graphs , 2010, International Journal of Computer Vision.

[40]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[41]  Dorin Comaniciu,et al.  Hierarchical parsing and semantic navigation of full body CT data , 2009, Medical Imaging.

[42]  Franz Kainberger,et al.  An automatic model-based system for joint space measurements on hand radiographs: initial experience. , 2007, Radiology.

[43]  Horst Bischof,et al.  Weakly Supervised Group-Wise Model Learning Based on Discrete Optimization , 2009, MICCAI.