Roto-Translational Control of Spacecraft in Low Earth Orbit Using Environmental Forces and Torques

In this paper, relative orbit and attitude adaptive controllers are integrated to perform roto-translational maneuvers for CubeSats equipped with a Drag Maneuvering Device (DMD). The DMD enables the host CubeSat with modulation of aerodynamic forces/torques and gravity gradient torque. Adaptive controllers for independent orbital and attitude maneuvers are revisited to account for traslational-attitude coupling while compensating for uncertainty in parameters such as atmospheric density, drag/lift coefficients, location of the Center of Mass (CoM) and inertia matrix. Uniformly ultimately bounded convergence of the attitude error and relative orbit states is guaranteed by Lyapunov-based stability analysis for the integrated roto-translational maneuver. A simulation example of an along-track formation maneuver between two CubeSats with simultaneous attitude control using only environmental forces and torques is presented to validate the controller.

[1]  Warren E. Dixon,et al.  Aerodynamic and gravity gradient based attitude control for CubeSats in the presence of environmental and spacecraft uncertainties , 2021 .

[2]  Warren E. Dixon,et al.  CubeSat Adaptive Attitude Control with Uncertain Drag Coefficient and Atmospheric Density , 2021 .

[3]  Warren E. Dixon,et al.  Differential drag-based multiple spacecraft maneuvering and on-line parameter estimation using integral concurrent learning , 2020 .

[4]  Raffaele Savino,et al.  Aerodynamic Control System for a Deployable Re-entry Capsule , 2020 .

[5]  Giuseppe Pezzella,et al.  Aerothermodynamics and thermal design for on-ground and in-flight testing of a deployable heat shield capsule , 2020 .

[6]  Warren E. Dixon,et al.  Adaptive control for differential drag-based rendezvous maneuvers with an unknown target , 2020 .

[7]  Riccardo Bevilacqua,et al.  Guidance, navigation, and control solutions for spacecraft re-entry point targeting using aerodynamic drag , 2019, Acta Astronautica.

[8]  Danil Ivanov,et al.  Study of satellite formation flying control using differential lift and drag , 2018, Acta Astronautica.

[9]  Alberto Fedele,et al.  Aerodynamics and flight mechanics activities for a suborbital flight test of a deployable heat shield capsule , 2018, Acta Astronautica.

[10]  Leon Stepan,et al.  Constellation Phasing with Differential Drag on Planet Labs Satellites , 2017 .

[11]  Joshua Schoolcraft,et al.  MarCO: Interplanetary Mission Development on a CubeSat Scale , 2016 .

[12]  M. Horsley,et al.  Small Satellite Rendezvous Using Differential Lift and Drag , 2013 .

[13]  Riccardo Bevilacqua,et al.  Differential drag spacecraft rendezvous using an adaptive Lyapunov control strategy , 2013 .

[14]  Surjit Varma,et al.  Multiple Satellite Formation Flying Using Differential Aerodynamic Drag , 2012 .

[15]  Sergei Nikolaev,et al.  Rendezvous Maneuvers of Small Spacecraft Using Differential Lift and Drag , 2011 .

[16]  Riccardo Bevilacqua,et al.  Rendezvous Maneuvers of Multiple Spacecraft Using Differential Drag Under J2 Perturbation , 2008 .

[17]  Zhijun Cai,et al.  A sufficiently smooth projection operator , 2006, IEEE Transactions on Automatic Control.

[18]  J. Junkins,et al.  Analytical Mechanics of Space Systems , 2003 .

[19]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[20]  R. Sedwick,et al.  High-Fidelity Linearized J Model for Satellite Formation Flight , 2002 .

[21]  E. Bergmann,et al.  Orbital Formationkeeping with Differential Drag , 1987 .

[22]  Cubesat Handbook , 2021 .

[23]  Riccardo Bevilacqua,et al.  Drag Deorbit Device: A New Standard Reentry Actuator for CubeSats , 2019, Journal of Spacecraft and Rockets.

[24]  W. Dixon,et al.  RELATIVE MANEUVERING FOR MULTIPLE SPACECRAFT VIA DIFFERENTIAL DRAG USING LQR AND CONSTRAINED LEAST SQUARES , 2019 .

[25]  U. Walter Spacecraft Attitude Dynamics , 2018 .

[26]  Alessandro Golkar,et al.  CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions , 2017 .

[27]  Marcin Pilinski,et al.  Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic Computations , 2011 .

[28]  Oliver Montenbruck,et al.  Satellite Orbits: Models, Methods and Applications , 2000 .

[29]  Jordi Puig-Suari,et al.  CubeSat: A New Generation of Picosatellite for Education and Industry Low-Cost Space Experimentation , 2000 .