Calabi–Yau Black Holes and (0,4) Sigma Models

[1]  S. Miller,et al.  Landau–Siegel zeroes and black hole entropy , 1999, hep-th/9903267.

[2]  R. Dijkgraaf Instanton strings and hyper-Kähler geometry , 1998, hep-th/9810210.

[3]  Edward Witten D-Branes And K-Theory , 1998, hep-th/9810188.

[4]  J. A. Harvey,et al.  Non-abelian tensor-multiplet anomalies , 1998, hep-th/9808060.

[5]  G. Moore Arithmetic and Attractors , 1998, hep-th/9807087.

[6]  J. Maldacena,et al.  Black hole entropy in M theory , 1997, hep-th/9711053.

[7]  G. Moore,et al.  K-theory and Ramond-Ramond charge , 1997, hep-th/9710230.

[8]  Sergey A. Cherkis,et al.  Wrapping the M theory five-brane on K3 , 1997, hep-th/9703062.

[9]  J. Schwarz,et al.  World volume action of the M theory five-brane , 1997, hep-th/9701166.

[10]  I. Bandos,et al.  Covariant Action for the Super-Five-Brane of M Theory , 1997, hep-th/9701149.

[11]  J. Schwarz Coupling a self-dual tensor to gravity in six dimensions , 1997, hep-th/9701008.

[12]  J. Maldacena N=2 extremal black holes and intersecting branes , 1996, hep-th/9611163.

[13]  D. Sorokin,et al.  Lorentz-invariant actions for chiral p-forms , 1996, hep-th/9611100.

[14]  R. Kallosh,et al.  Classical and quantum N = 2 supersymmetric black holes , 1996, hep-th/9610105.

[15]  P. Mitra Black Hole Entropy , 1996, hep-th/9603184.

[16]  S. Ferrara,et al.  M-theory on a Calabi-Yau manifold , 1996, hep-th/9602102.

[17]  C. Vafa,et al.  Microscopic origin of the Bekenstein-Hawking entropy , 1996, hep-th/9601029.

[18]  A. Strominger Open p-branes , 1995, hep-th/9512059.

[19]  A. Strominger,et al.  Fivebranes, membranes and non-perturbative string theory , 1995, hep-th/9507158.

[20]  J. A. Harvey,et al.  The heterotic string is a soliton , 1995, hep-th/9504047.

[21]  K. Mohri,et al.  Geometry of (0,2) Landau-Ginzburg orbifolds , 1994, hep-th/9402148.

[22]  G. Papadopoulos,et al.  Massive sigma models with (p,q) supersymmetry , 1993, hep-th/9307066.

[23]  G. Papadopoulos,et al.  Potentials for (p, 0) and (1, 1) supersymmetric sigma models with torsion , 1993, hep-th/9307013.

[24]  Sergio Ferrara,et al.  GEOMETRY OF TYPE II SUPERSTRINGS AND THE MODULI OF SUPERCONFORMAL FIELD THEORIES , 1989 .

[25]  G. Papadopoulos,et al.  Further remarks on the geometry of two-dimensional non-linear σ-models , 1988 .

[26]  Kunihiko Kodaira,et al.  Complex manifolds and deformation of complex structures , 1985 .

[27]  E. Witten,et al.  Supersymmetric sigma models and the heterotic string , 1985 .

[28]  W. Schmid Variation of hodge structure: The singularities of the period mapping , 1973 .

[29]  V. Kulikov,et al.  Complex Algebraic Varieties: Periods of Integrals and Hodge Structures , 1998 .

[30]  J.-L. Brylinski,et al.  An Overview of Recent Advances in Hodge Theory , 1998, Complex Manifolds.

[31]  P. Griffiths,et al.  Infinitesimal variations of hodge structure (I) , 1983 .