Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes

Three classes of low-G+C Gram-positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat-resistant endospores. Spore-forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose-degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best-studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore-formers were found to have genomes larger than 2300 kb and encompass over 2150 protein-coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore-formers lack, among others, spoIIB, sda, spoVID and safA genes and have non-orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid-soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation-specific genes in Bacilli and Clostridia.

[1]  D. Hilbert,et al.  Sporulation of Bacillus subtilis. , 2004, Current opinion in microbiology.

[2]  E. Pelletier,et al.  Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence , 2010, BMC Genomics.

[3]  A. Sonenshein,et al.  Efficient sporulation in Clostridium difficile requires disruption of the σK gene , 2003, Molecular microbiology.

[4]  A. Henriques,et al.  Involvement of Superoxide Dismutase in Spore Coat Assembly in Bacillus subtilis , 1998, Journal of bacteriology.

[5]  W. C. Johnson,et al.  Acid-soluble spore proteins of Bacillus subtilis , 1981, Journal of bacteriology.

[6]  John F. Stolz,et al.  Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic , 1998, Archives of Microbiology.

[7]  Scott Federhen,et al.  The NCBI Taxonomy database , 2011, Nucleic Acids Res..

[8]  B. McClane,et al.  A Novel Small Acid Soluble Protein Variant Is Important for Spore Resistance of Most Clostridium perfringens Food Poisoning Isolates , 2008, PLoS pathogens.

[9]  M. Peck Biology and genomic analysis of Clostridium botulinum. , 2009, Advances in microbial physiology.

[10]  R. Buckingham,et al.  Peptidyl‐tRNA hydrolase in Bacillus subtilis, encoded by spoVC, is essential to vegetative growth, whereas the homologous enzyme in Saccharomyces cerevisiae is dispensable , 2002, Molecular microbiology.

[11]  B. Ahring,et al.  Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. , 1999, International journal of systematic bacteriology.

[12]  G. Spiegelman,et al.  Dimer formation and transcription activation in the sporulation response regulator Spo0A. , 2002, Journal of molecular biology.

[13]  Michael Y. Galperin,et al.  Dimeric dUTPases, HisE, and MazG belong to a new superfamily of all-alpha NTP pyrophosphohydrolases with potential "house-cleaning" functions. , 2005, Journal of molecular biology.

[14]  J. Errington Regulation of endospore formation in Bacillus subtilis , 2003, Nature Reviews Microbiology.

[15]  David S. Goodsell,et al.  The RCSB Protein Data Bank: redesigned web site and web services , 2010, Nucleic Acids Res..

[16]  Lynne A. Goodwin,et al.  Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2T) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov. and emendation of the family Alicyclobacillaceae da Costa and Rainey, 2010. , 2011, Standards in genomic sciences.

[17]  D. Rudner,et al.  Novel Secretion Apparatus Maintains Spore Integrity and Developmental Gene Expression in Bacillus subtilis , 2009, PLoS genetics.

[18]  K. Watabe,et al.  Proteins Involved in Formation of the Outermost Layer of Bacillus subtilis Spores , 2011, Journal of bacteriology.

[19]  Eugene V. Koonin,et al.  Phylogenomics of Prokaryotic Ribosomal Proteins , 2012, PloS one.

[20]  Michael Y. Galperin,et al.  Using the COG Database to Improve Gene Recognition in Complete Genomes , 2004, Genetica.

[21]  D. Rudner,et al.  Subcellular localization of a sporulation membrane protein is achieved through a network of interactions along and across the septum , 2005, Molecular microbiology.

[22]  Eleftherios T. Papoutsakis,et al.  A comparative genomic view of clostridial sporulation and physiology , 2005, Nature Reviews Microbiology.

[23]  P. Setlow,et al.  Levels of Small Molecules and Enzymes in the Mother Cell Compartment and the Forespore of Sporulating Bacillus megaterium , 1977, Journal of bacteriology.

[24]  David A Rasko,et al.  Genomics of the Bacillus cereus group of organisms. , 2005, FEMS microbiology reviews.

[25]  C. Turnbough,et al.  Characterization of the Exosporium Basal Layer Protein BxpB of Bacillus anthracis , 2005, Journal of bacteriology.

[26]  Tatiana A. Tatusova,et al.  NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy , 2011, Nucleic Acids Res..

[27]  E. Ricca,et al.  Bacillus subtilis spore coat assembly requires cotH gene expression , 1996, Journal of bacteriology.

[28]  Paul Richardson,et al.  The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). , 2008, Environmental microbiology.

[29]  Lynne A. Goodwin,et al.  Complete Genome Sequence of the Anaerobic, Halophilic Alkalithermophile Natranaerobius thermophilus JW/NM-WN-LF , 2011, Journal of bacteriology.

[30]  Robert M. Kelly,et al.  Complete Genome Sequences for the Anaerobic, Extremely Thermophilic Plant Biomass-Degrading Bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus , 2011, Journal of bacteriology.

[31]  J. Meisner,et al.  A LytM Domain Dictates the Localization of Proteins to the Mother Cell-Forespore Interface during Bacterial Endospore Formation , 2010, Journal of bacteriology.

[32]  Michael Y. Galperin,et al.  House cleaning, a part of good housekeeping , 2006, Molecular microbiology.

[33]  C. Huttenhower,et al.  The genome of th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. , 2011, Cell host & microbe.

[34]  B. M. Hansen,et al.  The hidden lifestyles of Bacillus cereus and relatives. , 2003, Environmental microbiology.

[35]  Shane T. Jensen,et al.  The Program of Gene Transcription for a Single Differentiating Cell Type during Sporulation in Bacillus subtilis , 2004, PLoS biology.

[36]  Qibin Li,et al.  Complete Genome Sequence of the Mosquitocidal Bacterium Bacillus sphaericus C3-41 and Comparison with Those of Closely Related Bacillus Species , 2008, Journal of bacteriology.

[37]  G. Gottschalk,et al.  Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. , 1984, Archives of Microbiology.

[38]  R. Lewis,et al.  Characterization of the Sporulation Initiation Pathway of Clostridium difficile and Its Role in Toxin Production , 2009, Journal of bacteriology.

[39]  R. Losick,et al.  A master regulator for biofilm formation by Bacillus subtilis , 2004, Molecular microbiology.

[40]  E. Koonin,et al.  Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea , 2007, Biology Direct.

[41]  M. Inui,et al.  Complete Genome Sequence of the Dehalorespiring Bacterium Desulfitobacterium hafniense Y51 and Comparison withDehalococcoides ethenogenes 195 , 2006, Journal of bacteriology.

[42]  W. H. Coleman,et al.  Extremely Variable Conservation of γ-Type Small, Acid-Soluble Proteins from Spores of Some Species in the Bacterial Order Bacillales , 2011, Journal of bacteriology.

[43]  Vineet K. Sharma,et al.  Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of th17 cell differentiation. , 2011, Cell host & microbe.

[44]  Michael Y. Galperin Structural Classification of Bacterial Response Regulators: Diversity of Output Domains and Domain Combinations , 2006, Journal of bacteriology.

[45]  J. Hoch,et al.  Characterization of interactions between a two-component response regulator, Spo0F, and its phosphatase, RapB. , 1998, Biochemistry.

[46]  Marta Perego,et al.  A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor Spo0A of Bacillus subtilis , 2001, Molecular microbiology.

[47]  R. Isticato,et al.  Interactions among CotB, CotG, and CotH during Assembly of the Bacillus subtilis Spore Coat , 2004, Journal of bacteriology.

[48]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[49]  A. Kornberg,et al.  Biochemical studies of bacterial sporulation and germination. VI. Origin of spore core and coat proteins. , 1968, The Journal of biological chemistry.

[50]  D. Rudner,et al.  SpoIIQ Anchors Membrane Proteins on Both Sides of the Sporulation Septum in Bacillus subtilis* , 2008, Journal of Biological Chemistry.

[51]  S. Chiba,et al.  Impact of Membrane Fusion and Proteolysis on SpoIIQ Dynamics and Interaction with SpoIIIAH* , 2007, Journal of Biological Chemistry.

[52]  Michael Y. Galperin,et al.  Diversity of structure and function of response regulator output domains. , 2010, Current opinion in microbiology.

[53]  Santiago Garcia-Vallvé,et al.  HEG-DB: a database of predicted highly expressed genes in prokaryotic complete genomes under translational selection , 2007, Nucleic Acids Res..

[54]  P. Stragier A Gene Odyssey: Exploring the Genomes of Endospore-Forming Bacteria , 2002 .

[55]  Erin M. Conlon,et al.  The forespore line of gene expression in Bacillus subtilis. , 2006, Journal of molecular biology.

[56]  P. Setlow,et al.  Genes for Bacillus megaterium small, acid-soluble spore proteins: cloning and nucleotide sequence of three additional genes from this multigene family , 1986, Journal of bacteriology.

[57]  Assunta Pelosi,et al.  CotC-CotU Heterodimerization during Assembly of the Bacillus subtilis Spore Coat , 2007, Journal of bacteriology.

[58]  Bernard Henrissat,et al.  Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production , 2010, Journal of bacteriology.

[59]  Shane T. Jensen,et al.  The sigmaE regulon and the identification of additional sporulation genes in Bacillus subtilis. , 2003, Journal of molecular biology.

[60]  J. Wiegel,et al.  Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes) , 2004, Archives of Microbiology.

[61]  N. Bergman,et al.  Transcriptional Profiling of the Bacillus anthracis Life Cycle In Vitro and an Implied Model for Regulation of Spore Formation , 2006, Journal of bacteriology.

[62]  J. Wiegel,et al.  Natranaerobius thermophilus gen. nov., sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. , 2007, International Journal of Systematic and Evolutionary Microbiology.

[63]  Michelle G. Giglio,et al.  TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes , 2006, Nucleic Acids Res..

[64]  Pontus Larsson,et al.  Sporulation in mycobacteria , 2009, Proceedings of the National Academy of Sciences.

[65]  J. Marrazzo,et al.  Molecular identification of bacteria associated with bacterial vaginosis. , 2005, The New England journal of medicine.

[66]  K. Watabe,et al.  The Bacillus subtilis yabQ gene is essential for formation of the spore cortex. , 2001, Microbiology.

[67]  Eoin L. Brodie,et al.  A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells , 2008, The ISME Journal.

[68]  Rainer Merkl,et al.  The genome sequence of Clostridium tetani, the causative agent of tetanus disease , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  K. Pogliano,et al.  Zipper-like interaction between proteins in adjacent daughter cells mediates protein localization. , 2004, Genes & development.

[70]  B. Gay,et al.  Negativicoccus succinicivorans gen. nov., sp. nov., isolated from human clinical samples, emended description of the family Veillonellaceae and description of Negativicutes classis nov., Selenomonadales ord. nov. and Acidaminococcaceae fam. nov. in the bacterial phylum Firmicutes. , 2010, International journal of systematic and evolutionary microbiology.

[71]  B. Ahring,et al.  Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland , 1997, Archives of Microbiology.

[72]  E. Stackebrandt,et al.  Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. , 1994, FEMS microbiology letters.

[73]  S. Garcia-Vallvé,et al.  CAIcal: A combined set of tools to assess codon usage adaptation , 2008, Biology Direct.

[74]  Michael Y. Galperin,et al.  Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1 , 2008, Genome Biology.

[75]  J. Maddock,et al.  Proteomic Analysis of the Spore Coats of Bacillus subtilis and Bacillus anthracis , 2003, Journal of bacteriology.

[76]  P. Setlow Small, acid-soluble spore proteins of Bacillus species: structure, synthesis, genetics, function, and degradation. , 1988, Annual review of microbiology.

[77]  P. Dürre Fermentative Butanol Production , 2008, Annals of the New York Academy of Sciences.

[78]  Michael Y. Galperin,et al.  The cyanobacterial genome core and the origin of photosynthesis , 2006, Proceedings of the National Academy of Sciences.

[79]  T. Yoshimura,et al.  Mode of Action of a Germination-Specific Cortex-Lytic Enzyme, SleC, of Clostridium perfringens S40 , 2007, Bioscience, biotechnology, and biochemistry.

[80]  A. Gasbarrini,et al.  Bacillus subtilis isolated from the human gastrointestinal tract. , 2009, Research in microbiology.

[81]  H. Nishida,et al.  Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae. , 2011, Genomics.

[82]  P. Setlow Purification and properties of some unique low molecular weight basic proteins degraded during germination of Bacillus megaterium spores. , 1975, The Journal of biological chemistry.

[83]  Stephen H. Bryant,et al.  CD-Search: protein domain annotations on the fly , 2004, Nucleic Acids Res..

[84]  Robert G Beiko,et al.  Telling the whole story in a 10,000-genome world , 2011, Biology Direct.

[85]  N. Crickmore,et al.  Bacillus thuringiensis and Its Pesticidal Crystal Proteins , 1998, Microbiology and Molecular Biology Reviews.

[86]  Michael Y. Galperin,et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..

[87]  C. Francke,et al.  Clostridial spore germination versus bacilli: genome mining and current insights. , 2011, Food microbiology.

[88]  S. Clare,et al.  Proteomic and Genomic Characterization of Highly Infectious Clostridium difficile 630 Spores , 2009, Journal of bacteriology.

[89]  E. Bonch‐Osmolovskaya,et al.  Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. , 2008, International journal of systematic and evolutionary microbiology.

[90]  J. Marrazzo,et al.  Relationship of Specific Vaginal Bacteria and Bacterial Vaginosis Treatment Failure in Women Who Have Sex with Women , 2008, Annals of Internal Medicine.

[91]  E. Bonch‐Osmolovskaya,et al.  Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area. , 2005, International journal of systematic and evolutionary microbiology.

[92]  Lavanya Kannan,et al.  A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches , 2010, Bioinform..

[93]  J. Errington,et al.  A mechanism for cell cycle regulation of sporulation initiation in Bacillus subtilis. , 2009, Genes & development.

[94]  Songnian Hu,et al.  Complete Genome Sequence of Alicyclobacillus acidocaldarius Strain Tc-4-1 , 2011, Journal of bacteriology.

[95]  Peter T. McKenney,et al.  A Distance-Weighted Interaction Map Reveals a Previously Uncharacterized Layer of the Bacillus subtilis Spore Coat , 2010, Current Biology.

[96]  K. Pogliano,et al.  A Dispensable Role for Forespore-Specific Gene Expression in Engulfment of the Forespore during Sporulation ofBacillus subtilis , 2000, Journal of bacteriology.

[97]  U. Völker,et al.  Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. , 2005, Microbiology.

[98]  H. Szurmant,et al.  Phosphorylation and functional analysis of the sporulation initiation factor Spo0A from Clostridium botulinum , 2006, Molecular microbiology.

[99]  J. Hoch,et al.  Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum , 2011, Molecular microbiology.

[100]  S. Chiba,et al.  Dual localization pathways for the engulfment proteins during Bacillus subtilis sporulation , 2007, Molecular microbiology.

[101]  N. Bergman,et al.  Formation and Composition of the Bacillus anthracis Endospore , 2004, Journal of bacteriology.

[102]  I. André,et al.  Structure of the basal components of a bacterial transporter , 2012, Proceedings of the National Academy of Sciences.

[103]  L. Klobutcher,et al.  The Bacillus subtilis spore coat provides "eat resistance" during phagocytic predation by the protozoan Tetrahymena thermophila. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[104]  Q. Yao,et al.  Protein Profile of Bacillus subtilis Spore , 2011, Current Microbiology.

[105]  D. Popham Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox , 2002, Cellular and Molecular Life Sciences CMLS.

[106]  S. Erlandsen,et al.  Evidence for a complex life cycle and endospore formation in the attached, filamentous, segmented bacterium from murine ileum , 1976, Journal of bacteriology.

[107]  P. Setlow,et al.  Transglutaminase-Mediated Cross-Linking of GerQ in the Coats of Bacillus subtilis Spores , 2004, Journal of bacteriology.

[108]  U. Völker,et al.  Assembly and Function of a Spore Coat-Associated Transglutaminase of Bacillus subtilis , 2005, Journal of bacteriology.

[109]  María Martín,et al.  Ongoing and future developments at the Universal Protein Resource , 2010, Nucleic Acids Res..

[110]  K. Wilson,et al.  Structure of components of an intercellular channel complex in sporulating Bacillus subtilis , 2012, Proceedings of the National Academy of Sciences.

[111]  P. Setlow I will survive: DNA protection in bacterial spores. , 2007, Trends in microbiology.

[112]  R. Huber,et al.  Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium ammonifex degensii gen. nov. sp. nov. , 1996, Systematic and applied microbiology.

[113]  Luke E. Ulrich,et al.  Life in Hot Carbon Monoxide: The Complete Genome Sequence of Carboxydothermus hydrogenoformans Z-2901 , 2005, PLoS genetics.

[114]  A. Danchin,et al.  From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later , 2009, Microbiology.

[115]  M. Hattori,et al.  The Lifestyle of the Segmented Filamentous Bacterium: A Non-Culturable Gut-Associated Immunostimulating Microbe Inferred by Whole-Genome Sequencing , 2011, DNA research : an international journal for rapid publication of reports on genes and genomes.

[116]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[117]  Robert D. Finn,et al.  InterPro in 2011: new developments in the family and domain prediction database , 2011, Nucleic acids research.

[118]  Dylan Chivian,et al.  Environmental Genomics Reveals a Single-Species Ecosystem Deep Within Earth , 2008, Science.

[119]  R. Losick,et al.  Identification of a sporulation locus in cloned Bacillus subtilis deoxyribonucleic acid , 1980, Journal of bacteriology.

[120]  E. Bonch‐Osmolovskaya,et al.  Ammonifex thiophilus sp. nov., a hyperthermophilic anaerobic bacterium from a Kamchatka hot spring. , 2008, International journal of systematic and evolutionary microbiology.

[121]  Grant J. Jensen,et al.  Peptidoglycan Remodeling and Conversion of an Inner Membrane into an Outer Membrane during Sporulation , 2011, Cell.

[122]  P. Youngman,et al.  Structure and function of the Bacillus SpoIIE protein and its localization to sites of sporulation septum assembly , 1996, Molecular microbiology.

[123]  Michael Y. Galperin,et al.  Sequence analysis of GerM and SpoVS, uncharacterized bacterial ‘sporulation’ proteins with widespread phylogenetic distribution , 2008, Bioinform..

[124]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[125]  A. Moir,et al.  Identification of proteins in the exosporium of Bacillus anthracis. , 2004, Microbiology.

[126]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[127]  E. Bonch‐Osmolovskaya,et al.  Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction , 2006, Extremophiles.

[128]  Johannes Söding,et al.  Protein homology detection by HMM?CHMM comparison , 2005, Bioinform..

[129]  Eleftherios T. Papoutsakis,et al.  Transcriptional Program of Early Sporulation and Stationary-Phase Events in Clostridium acetobutylicum , 2005, Journal of bacteriology.

[130]  K. Schleifer,et al.  Delimiting the genus Staphylococcus through description of Macrococcus caseolyticus gen. nov., comb. nov. and Macrococcus equipercicus sp. nov., and Macrococcus bovicus sp. no. and Macrococcus carouselicus sp. nov. , 1998, International journal of systematic bacteriology.

[131]  Narmada Thanki,et al.  CDD: a Conserved Domain Database for the functional annotation of proteins , 2010, Nucleic Acids Res..

[132]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[133]  E J Dodson,et al.  The trans‐activation domain of the sporulation response regulator Spo0A revealed by X‐ray crystallography , 2000, Molecular microbiology.

[134]  D. Vitkup,et al.  Hierarchical Evolution of the Bacterial Sporulation Network , 2010, Current Biology.

[135]  Adam Driks,et al.  Do mycobacteria produce endospores? , 2009, Proceedings of the National Academy of Sciences.

[136]  Complete Genome Sequence of the Electricity-Producing “Thermincola potens” Strain JR , 2010, Journal of bacteriology.

[137]  D. Popham,et al.  EtfA catalyses the formation of dipicolinic acid in Clostridium perfringens , 2010, Molecular microbiology.

[138]  E. Papoutsakis,et al.  The transcriptional program underlying the physiology of clostridial sporulation , 2008, Genome Biology.

[139]  B. Snel,et al.  Toward Automatic Reconstruction of a Highly Resolved Tree of Life , 2006, Science.

[140]  Shane T. Jensen,et al.  The Spo0A regulon of Bacillus subtilis , 2003, Molecular microbiology.

[141]  Peter T. McKenney,et al.  Dynamics of spore coat morphogenesis in Bacillus subtilis , 2012, Molecular microbiology.

[142]  L. Petersen,et al.  Penicillin‐binding protein SpoVD disulphide is a target for StoA in Bacillus subtilis forespores , 2010, Molecular microbiology.