Limiting distribution of short cycles in inhomogeneous random uniform hypergraph

Abstract In random graph theory, one of the classical topics is to understand the asymptotic properties of the number of subgraphs. In this paper, we study the limiting distribution of the number of loose 2-cycles in inhomogeneous 3-uniform hypergraph. Specifically, we prove that if the hypergraph is relatively sparse, the centered and scaled number of the loose 2-cycles converges in law to the standard normal distribution.

[1]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[2]  Andrzej Dudek,et al.  On Rainbow Hamilton Cycles in Random Hypergraphs , 2018, Electron. J. Comb..

[3]  Ervin Györi,et al.  Hypergraphs with no cycle of length 4 , 2012, Discret. Math..

[4]  L. Qi,et al.  Regular Uniform Hypergraphs, $s$-Cycles, $s$-Paths and Their largest Laplacian H-Eigenvalues , 2013, 1309.2163.

[5]  Béla Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007, Random Struct. Algorithms.

[6]  Zoltán Füredi,et al.  On 3-uniform hypergraphs without a cycle of a given length , 2014, Discret. Appl. Math..

[7]  Serge J. Belongie,et al.  Higher order learning with graphs , 2006, ICML.

[8]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality and clustering in complex hyper-networks , 2006 .

[9]  Philippe Jégou,et al.  On the notion of cycles in hypergraphs , 2009, Discret. Math..

[10]  Ambedkar Dukkipati,et al.  Consistency of spectral hypergraph partitioning under planted partition model , 2015, 1505.01582.

[11]  Florent Krzakala,et al.  Spectral detection on sparse hypergraphs , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[12]  József Solymosi,et al.  Small cores in 3-uniform hypergraphs , 2015, J. Comb. Theory B.

[13]  Yosi Keller,et al.  Efficient High Order Matching , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  A. Rucinski When are small subgraphs of a random graph normally distributed? , 1988 .

[15]  Guido Caldarelli,et al.  Random hypergraphs and their applications , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Daniela Kühn,et al.  Loose Hamilton cycles in hypergraphs , 2008, Discret. Math..

[17]  Yury Person,et al.  On extremal hypergraphs for Hamiltonian cycles , 2011, Eur. J. Comb..

[18]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[19]  Svante Janson,et al.  Random Regular Graphs: Asymptotic Distributions and Contiguity , 1995, Combinatorics, Probability and Computing.

[20]  Marianna Bolla,et al.  Spectra, Euclidean representations and clusterings of hypergraphs , 1993, Discret. Math..

[21]  Jie Ma,et al.  On Tight Cycles in Hypergraphs , 2017, SIAM J. Discret. Math..

[22]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Nicholas C. Wormald,et al.  Distribution of subgraphs of random regular graphs , 2008, Random Struct. Algorithms.

[24]  Rajko Nenadov,et al.  Powers of Hamilton cycles in random graphs and tight Hamilton cycles in random hypergraphs , 2016, Random Struct. Algorithms.

[25]  Daniela Kühn,et al.  Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree , 2006, J. Comb. Theory, Ser. B.

[26]  Nicholas C. Wormald,et al.  The asymptotic distribution of short cycles in random regular graphs , 1981, J. Comb. Theory, Ser. B.

[27]  Brendan D. McKay,et al.  Short Cycles in Random Regular Graphs , 2004, Electron. J. Comb..

[28]  B. Bollobás,et al.  Cliques in random graphs , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.