QMC integration for lognormal-parametric, elliptic PDEs: local supports and product weights

We analyze convergence rates of quasi-Monte Carlo (QMC) quadratures for countably-parametric solutions of linear, elliptic partial differential equations (PDE) in divergence form with log-Gaussian diffusion coefficient, based on the error bounds in Nichols and Kuo (J Complex 30(4):444–468, 2014. https://doi.org/10.1016/j.jco.2014.02.004). We prove, for representations of the Gaussian random field PDE input with locally supported basis functions, and for continuous, piecewise polynomial finite element discretizations in the physical domain novel QMC error bounds in weighted spaces with product weights that exploit localization of supports of the basis elements representing the input Gaussian random field. In this case, the cost of the fast component-by-component algorithm for constructing the QMC points scales linearly in terms of the integration dimension. The QMC convergence rate $$\mathcal {O}(N^{-1+\delta })$$O(N-1+δ) (independent of the parameter space dimension s) is achieved under weak summability conditions on the expansion coefficients.

[1]  Elisabeth Ullmann,et al.  Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.

[2]  Christoph Schwab,et al.  Isotropic Gaussian random fields on the sphere: regularity, fast simulation, and stochastic partial differential equations , 2014 .

[3]  Frances Y. Kuo,et al.  Multilevel Quasi-Monte Carlo methods for lognormal diffusion problems , 2015, Math. Comput..

[4]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[5]  Christoph Schwab,et al.  QMC Algorithms with Product Weights for Lognormal-Parametric, Elliptic PDEs , 2016 .

[6]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[7]  Grzegorz W. Wasilkowski,et al.  Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands , 2010, J. Complex..

[8]  H. Triebel Function Spaces and Wavelets on Domains , 2008 .

[9]  L. Herrmann,et al.  Multilevel quasi-Monte Carlo integration with product weights for elliptic PDEs with lognormal coefficients , 2019, ESAIM: Mathematical Modelling and Numerical Analysis.

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[12]  Gyula Csató,et al.  The Pullback Equation for Differential Forms , 2011 .

[13]  Dirk Nuyens,et al.  Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..

[14]  Frances Y. Kuo,et al.  CORRECTION TO “QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND” , 2012, The ANZIAM Journal.

[15]  Albert Cohen,et al.  Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients , 2015, 1509.07050.

[16]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[17]  James A. Nichols,et al.  Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.

[18]  F. Smithies Linear Operators , 2019, Nature.

[19]  H. Triebel Theory Of Function Spaces , 1983 .

[20]  Christoph Schwab,et al.  Quasi-Monte Carlo Integration for Affine-Parametric, Elliptic PDEs: Local Supports and Product Weights , 2018, SIAM J. Numer. Anal..

[21]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[22]  James A. Nichols,et al.  Fast CBC construction of randomly shifted lattice rules achieving O(n-1+δ) convergence for unbounded integrands over R5 in weighted spaces with POD weights , 2014, J. Complex..

[23]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[24]  Christoph Schwab,et al.  Computational Higher Order Quasi-Monte Carlo Integration , 2014, MCQMC.

[25]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[26]  Dirk Nuyens,et al.  Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..

[27]  Christoph Schwab,et al.  N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs , 2014 .

[28]  C. Schwab,et al.  Numerical analysis of lognormal diffusions on the sphere , 2016, Stochastics and Partial Differential Equations: Analysis and Computations.

[29]  Albert Cohen,et al.  Representations of Gaussian Random Fields and Approximation of Elliptic PDEs with Lognormal Coefficients , 2016, Journal of Fourier Analysis and Applications.

[30]  Helmut Harbrecht,et al.  Covariance regularity and $$\mathcal {H}$$H-matrix approximation for rough random fields , 2017, Numerische Mathematik.

[31]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[32]  Lukas Herrmann Strong convergence analysis of iterative solvers for random operator equations , 2019, Calcolo.