Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro.

In clinical trials, the tyrosine kinase inhibitor STI571 has proven highly effective in reducing leukemic cell burden in chronic myeloid leukemia (CML). The overall sensitivity of CML CD34(+) progenitor cells to STI571 and the degree to which cell death was dependent on cell cycle status were determined. Stem cells (Lin(-)CD34(+)) from the peripheral blood of patients with CML in chronic phase and from granulocyte-colony-stimulating factor-mobilized healthy donors were labeled with carboxy-fluorescein diacetate succinimidyl diester dye to enable high-resolution tracking of cell division. Then they were cultured for 3 days with and without growth factors +/- STI571. After culture, the cells were separated by fluorescence-activated cell sorting into populations of viable quiescent versus cycling cells for genotyping. For healthy controls, in the presence of growth factors, STI571 affected neither cell cycle kinetics nor recovery of viable cells. In the absence of growth factors, normal cells were unable to divide. For CML samples, in the presence or absence of growth factors, the response to STI571 was variable. In the most sensitive cases, STI571 killed almost all dividing cells; however, a significant population of viable CD34(+) cells was recovered in the undivided peak and confirmed to be part of the leukemic clone. STI571 also appeared to exhibit antiproliferative activity on the quiescent population. These studies confirm that CML stem cells remain viable in a quiescent state even in the presence of growth factors and STI571. Despite dramatic short-term responses in vivo, such in vitro insensitivity to STI571, in combination with its demonstrated antiproliferative activity, could translate into disease relapse after prolonged therapy.

[1]  M. Loda,et al.  BCR/ABL Regulates Expression of the Cyclin-dependent Kinase Inhibitor p27Kip1 through the Phosphatidylinositol 3-Kinase/AKT Pathway* , 2000, The Journal of Biological Chemistry.

[2]  J. Griffin,et al.  Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. , 2000, Blood.

[3]  A. Elefanty,et al.  Comparison of effects of the tyrosine kinase inhibitors AG957, AG490, and STI571 on BCR-ABL--expressing cells, demonstrating synergy between AG490 and STI571. , 2001, Blood.

[4]  J. Rowley A New Consistent Chromosomal Abnormality in Chronic Myelogenous Leukaemia identified by Quinacrine Fluorescence and Giemsa Staining , 1973, Nature.

[5]  E. Canaani,et al.  Fused transcript of abl and bcr genes in chronic myelogenous leukaemia , 1985, Nature.

[6]  T. Holyoake,et al.  Evolution of bone marrow transplantation--the original immunotherapy. , 2001, Trends in immunology.

[7]  B. Zehnbauer,et al.  Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. , 1994, Blood.

[8]  C. Eaves,et al.  High‐resolution cell division tracking demonstrates the Flt3‐ligand‐dependence of human marrow CD34+CD38− cell production in vitro , 1997, British journal of haematology.

[9]  G. Daley,et al.  Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[10]  P. N. Rao,et al.  Clinical Resistance to STI-571 Cancer Therapy Caused by BCR-ABL Gene Mutation or Amplification , 2001, Science.

[11]  N. Lydon,et al.  Selective inhibition of the platelet-derived growth factor signal transduction pathway by a protein-tyrosine kinase inhibitor of the 2-phenylaminopyrimidine class. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[12]  E. Buchdunger,et al.  In vivo eradication of human BCR/ABL-positive leukemia cells with an ABL kinase inhibitor. , 1999, Journal of the National Cancer Institute.

[13]  W. R. Bishop,et al.  Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia. , 2001, Blood.

[14]  Jürg Zimmermann,et al.  Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells , 1996, Nature Medicine.

[15]  J. Melo,et al.  Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. , 2000, Blood.

[16]  C. Sawyers,et al.  Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. , 2001, The New England journal of medicine.

[17]  B. Barlogie,et al.  Intensive combination chemotherapy (ROAP 10) and splenectomy in the management of chronic myelogenous leukemia. , 1985, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[18]  C. Eaves,et al.  Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  T. Meyer,et al.  Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. , 1996, Cancer research.

[20]  G. Krystal,et al.  BCR – ABL accelerates C2-ceramide-induced apoptosis , 1998, Oncogene.

[21]  G. Daley,et al.  Treatment of Bcr/Abl-positive acute lymphoblastic leukemia in P190 transgenic mice with the farnesyl transferase inhibitor SCH66336. , 2001, Blood.

[22]  C. Eaves,et al.  Primitive quiescent leukemic cells from patients with chronic myeloid leukemia spontaneously initiate factor-independent growth in vitro in association with up-regulation of expression of interleukin-3. , 2001, Blood.

[23]  C. Eaves,et al.  BCR-ABL expression in different subpopulations of functionally characterized Ph+ CD34+ cells from patients with chronic myeloid leukemia. , 1996, Blood.

[24]  T. Holyoake,et al.  Autonomous multi-lineage differentiation in vitro of primitive CD34+ cells from patients with chronic myeloid leukemia , 2000, Leukemia.

[25]  C. Sawyers,et al.  Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. , 2001, The New England journal of medicine.

[26]  W. El-Deiry,et al.  BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents. , 1995, Blood.

[27]  G. Sauvageau,et al.  Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Varella‐Garcia,et al.  Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. , 2000, Blood.

[29]  B. Druker,et al.  Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. , 2000, The Journal of clinical investigation.

[30]  J. Burchenal,et al.  Growth characteristics of leukemic and normal hematopoietic cells in Ph' + chronic myelogenous leukemia and effects of intensive treatment. , 1982, Blood.

[31]  J. Melo,et al.  The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. , 1997, Blood.

[32]  Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. , 1999, Blood.

[33]  H. Mano,et al.  In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. , 2001, Blood.

[34]  G. Daley,et al.  The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. , 1986, Science.

[35]  K. Kolibaba,et al.  Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells. , 2000, Blood.

[36]  J. Topaly,et al.  Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL-positive chronic myelogenous leukemia cells , 2001, Leukemia.