A Simple Linear-Time Modular Decomposition Algorithm for Graphs, Using Order Extension
暂无分享,去创建一个
[1] Jeremy P. Spinrad,et al. Ordered Vertex Partitioning , 2000, Discret. Math. Theor. Comput. Sci..
[2] R. Möhring. Algorithmic Aspects of Comparability Graphs and Interval Graphs , 1985 .
[3] Jeremy P. Spinrad,et al. A linear algorithm to decompose inheritance graphs into modules , 1995, Algorithmica.
[4] Fabien de Montgolfier,et al. De'composition Modulaire des Graphes. The'orie, Extensions et Algorithmes , 2003 .
[5] Robert E. Tarjan,et al. Efficient Planarity Testing , 1974, JACM.
[6] Jeremy P. Spinrad,et al. Modular decomposition and transitive orientation , 1999, Discret. Math..
[7] Wen-Lian Hsu,et al. Substitution Decomposition on Chordal Graphs and Applications , 1991, ISA.
[8] Michel Habib,et al. A New Linear Algorithm for Modular Decomposition , 1994, CAAP.
[9] Lorna Stewart,et al. A Linear Recognition Algorithm for Cographs , 1985, SIAM J. Comput..
[10] Stephan Olariu,et al. The ultimate interval graph recognition algorithm? , 1998, SODA '98.
[11] Michel Habib,et al. Graph decompositions and factorizing permutations , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.
[12] Laurent Viennot,et al. Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..
[13] R. Möhring. Algorithmic graph theory and perfect graphs , 1986 .
[14] A. Lempel,et al. Transitive Orientation of Graphs and Identification of Permutation Graphs , 1971, Canadian Journal of Mathematics.
[15] T. Gallai. Transitiv orientierbare Graphen , 1967 .
[16] John E. Hopcroft,et al. An n log n algorithm for minimizing states in a finite automaton , 1971 .
[17] Michel Habib,et al. A simple linear time algorithm for cograph recognition , 2005, Discret. Appl. Math..
[18] Kellogg S. Booth,et al. Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..
[19] Laurent Viennot,et al. Partition Refinement Techniques: An Interesting Algorithmic Tool Kit , 1999, Int. J. Found. Comput. Sci..
[20] Jens Gustedt,et al. Efficient and Practical Algorithms for Sequential Modular Decomposition , 2001, J. Algorithms.
[21] Wen-Lian Hsu,et al. PC trees and circular-ones arrangements , 2003, Theor. Comput. Sci..
[22] Robert E. Tarjan,et al. Three Partition Refinement Algorithms , 1987, SIAM J. Comput..
[23] Jeremy P. Spinrad,et al. Linear-time modular decomposition and efficient transitive orientation of comparability graphs , 1994, SODA '94.
[24] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[25] F. Radermacher,et al. Substitution Decomposition for Discrete Structures and Connections with Combinatorial Optimization , 1984 .
[26] Sophie Tison. Trees in Algebra and Programming — CAAP'94 , 1994, Lecture Notes in Computer Science.