A Simple Linear-Time Modular Decomposition Algorithm for Graphs, Using Order Extension

The first polynomial time algorithm (\(\mathcal{O}(n^4)\)) for modular decomposition appeared in 1972 [8] and since then there have been incremental improvements, eventually resulting in linear-time algorithms [22,7,23,9]. Although having optimal time complexity these algorithms are quite complicated and difficult to implement. In this paper we present an easily implementable linear-time algorithm for modular decomposition. This algorithm uses the notion of factorizing permutation and a new data-structure, the Ordered Chain Partitions.

[1]  Jeremy P. Spinrad,et al.  Ordered Vertex Partitioning , 2000, Discret. Math. Theor. Comput. Sci..

[2]  R. Möhring Algorithmic Aspects of Comparability Graphs and Interval Graphs , 1985 .

[3]  Jeremy P. Spinrad,et al.  A linear algorithm to decompose inheritance graphs into modules , 1995, Algorithmica.

[4]  Fabien de Montgolfier,et al.  De'composition Modulaire des Graphes. The'orie, Extensions et Algorithmes , 2003 .

[5]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[6]  Jeremy P. Spinrad,et al.  Modular decomposition and transitive orientation , 1999, Discret. Math..

[7]  Wen-Lian Hsu,et al.  Substitution Decomposition on Chordal Graphs and Applications , 1991, ISA.

[8]  Michel Habib,et al.  A New Linear Algorithm for Modular Decomposition , 1994, CAAP.

[9]  Lorna Stewart,et al.  A Linear Recognition Algorithm for Cographs , 1985, SIAM J. Comput..

[10]  Stephan Olariu,et al.  The ultimate interval graph recognition algorithm? , 1998, SODA '98.

[11]  Michel Habib,et al.  Graph decompositions and factorizing permutations , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[12]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[13]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[14]  A. Lempel,et al.  Transitive Orientation of Graphs and Identification of Permutation Graphs , 1971, Canadian Journal of Mathematics.

[15]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[16]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[17]  Michel Habib,et al.  A simple linear time algorithm for cograph recognition , 2005, Discret. Appl. Math..

[18]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[19]  Laurent Viennot,et al.  Partition Refinement Techniques: An Interesting Algorithmic Tool Kit , 1999, Int. J. Found. Comput. Sci..

[20]  Jens Gustedt,et al.  Efficient and Practical Algorithms for Sequential Modular Decomposition , 2001, J. Algorithms.

[21]  Wen-Lian Hsu,et al.  PC trees and circular-ones arrangements , 2003, Theor. Comput. Sci..

[22]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[23]  Jeremy P. Spinrad,et al.  Linear-time modular decomposition and efficient transitive orientation of comparability graphs , 1994, SODA '94.

[24]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[25]  F. Radermacher,et al.  Substitution Decomposition for Discrete Structures and Connections with Combinatorial Optimization , 1984 .

[26]  Sophie Tison Trees in Algebra and Programming — CAAP'94 , 1994, Lecture Notes in Computer Science.