HySoN : A Distributed Agent Gossip Protocol for Group Formation in Social Networks

On-line social networks allows people to easily interact wi th each other by means of social computer services. This scenario makes po ssible to search in a social network for affinities or new opportunities that sati fy specific requirements. However, for many users such activities often imply undesir able accesses to personal sensitive data. In this scenario we propose a novel app ro ch, called HySoN, based on an overlay network of software agents, which exploi ts a gossip protocol. HySoN allows users to locally maintain sensitive user’ s data, satisfying the privacy requirements preserving sensitive data. Indeed, t he properties involved in the HySoN user aggregation are inferred by local data not pub lished in the social network. Some experimental results obtained on simulated o n-line social networks data show the searching of suitable nodes is very efficient du e o the topology of the overlay network, which exhibits the small-world propertie s.

[1]  Ben Shneiderman,et al.  Balancing Systematic and Flexible Exploration of Social Networks , 2006, IEEE Transactions on Visualization and Computer Graphics.

[2]  Giuseppe M. L. Sarnè,et al.  Modeling cooperation in multi-agent communities , 2004, Cognitive Systems Research.

[3]  Alain Degenne,et al.  Introducing Social Networks , 1999 .

[4]  Gabrielle Demange,et al.  A Survey of Network Formation Models: Stability and Efficiency , 2005 .

[5]  Jon M. Kleinberg,et al.  Group formation in large social networks: membership, growth, and evolution , 2006, KDD '06.

[6]  A. Moore,et al.  Dynamic social network analysis using latent space models , 2005, SKDD.

[7]  Matthias Klusch,et al.  Information agent technology for the Internet: A survey , 2001, Data Knowl. Eng..

[8]  Giuseppe M. L. Sarnè,et al.  Integrating trust measures in multiagent systems , 2012, Int. J. Intell. Syst..

[9]  Manuel Castells,et al.  The Internet Galaxy: Reflections on the Internet, Business, and Society , 2001 .

[10]  Santosh S. Vempala,et al.  On clusterings-good, bad and spectral , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[11]  Márk Jelasity,et al.  Gossip-based aggregation in large dynamic networks , 2005, TOCS.

[12]  Steven B. Andrews,et al.  Structural Holes: The Social Structure of Competition , 1995, The SAGE Encyclopedia of Research Design.

[13]  Marie desJardins,et al.  Agent-organized networks for dynamic team formation , 2005, AAMAS '05.

[14]  Cheng-Te Li,et al.  Team Formation for Generalized Tasks in Expertise Social Networks , 2010, 2010 IEEE Second International Conference on Social Computing.

[15]  Corrado Santoro,et al.  ComplexSim: a flexible simulation platform for complex systems , 2013, Int. J. Simul. Process. Model..

[16]  Nitesh V. Chawla,et al.  Identifying and evaluating community structure in complex networks , 2010, Pattern Recognit. Lett..

[17]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[18]  Luca Becchetti,et al.  Online team formation in social networks , 2012, WWW.

[19]  Boleslaw K. Szymanski,et al.  Team Formation in Social Networks , 2012, ISCIS.

[20]  Corrado Santoro,et al.  Exploiting the Small-World Effect for Resource Finding in P2P Grids/Clouds , 2011, 2011 IEEE 20th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises.

[21]  M. Newman,et al.  Nonequilibrium phase transition in the coevolution of networks and opinions. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Theodoros Lappas,et al.  Finding a team of experts in social networks , 2009, KDD.

[23]  Julie A. McCann,et al.  A survey of autonomic computing—degrees, models, and applications , 2008, CSUR.

[24]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[25]  Corrado Santoro,et al.  ComplexSim: An SMP-Aware Complex Network Simulation Framework , 2012, 2012 Sixth International Conference on Complex, Intelligent, and Software Intensive Systems.

[26]  Giuseppe M. L. Sarnè,et al.  Matching Users with Groups in Social Networks , 2013, IDC.

[27]  Jacques Ferber,et al.  Multi-agent systems - an introduction to distributed artificial intelligence , 1999 .

[28]  Borko Furht,et al.  Handbook of Cloud Computing , 2010 .

[29]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[30]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[31]  Corrado Santoro,et al.  Decentralised Resource Finding in Cloud/Grid Computing Environments: A Performance Evaluation , 2012, 2012 IEEE 21st International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises.

[32]  BabaogluOzalp,et al.  Gossip-based aggregation in large dynamic networks , 2005 .

[33]  Guillaume Pierre,et al.  Autonomous Resource Selection for Decentralized Utility Computing , 2009, 2009 29th IEEE International Conference on Distributed Computing Systems.

[34]  António Lucas Soares,et al.  Improving the quality of collaboration requirements for information management through social networks analysis , 2007, Int. J. Inf. Manag..

[35]  David Krackhardt,et al.  WANTED: A Good Network Theory of Organization@@@Structural Holes: The Social Structure of Competition. , 1995 .

[36]  Atish Das Sarma,et al.  Multi-skill Collaborative Teams based on Densest Subgraphs , 2011, SDM.

[37]  M. Zaharia,et al.  Above the Clouds : A View of Cloud Computing , 2009 .

[38]  Wan-Shiou Yang,et al.  Mining Social Networks for Targeted Advertising , 2006, Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06).

[39]  Giuseppe M. L. Sarnè,et al.  A Trust-Based Approach for a Competitive Cloud/Grid Computing Scenario , 2012, IDC.

[40]  Charu C. Aggarwal,et al.  Graph Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[41]  Ian Foster,et al.  A peer-to-peer approach to resource location in grid environments , 2002 .

[42]  Ian T. Foster,et al.  A peer-to-peer approach to resource location in grid environments , 2002, Proceedings 11th IEEE International Symposium on High Performance Distributed Computing.

[43]  Santosh S. Vempala,et al.  On clusterings: Good, bad and spectral , 2004, JACM.

[44]  K. Marx Selected writings in sociology and social philosophy , 1956 .

[45]  T. Postmes,et al.  The Formation of Group Norms in Computer-Mediated Communication , 2000 .

[46]  Bill Howard,et al.  Analyzing online social networks , 2008, Commun. ACM.

[47]  Luca Becchetti,et al.  Power in unity: forming teams in large-scale community systems , 2010, CIKM.

[48]  Luciano Rossoni,et al.  Models and methods in social network analysis , 2006 .

[49]  Andrei A. Bulatov,et al.  Complexity of conservative constraint satisfaction problems , 2011, TOCL.

[50]  Ulrik Brandes,et al.  Engineering graph clustering: Models and experimental evaluation , 2008, JEAL.

[51]  Bart Selman,et al.  Tracking evolving communities in large linked networks , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Domenico Talia,et al.  IEEE Internet Computing: Peer To Peer - Toward a Synergy Between P2P and Grids , 2003, IEEE Distributed Syst. Online.