Optimal Shapes Maximizing the Steklov Eigenvalues

In this paper we consider the problem of maximizing the $k$th Steklov eigenvalue of the Laplacian (or a more general spectral functional), among all sets of ${\mathbb R}^d$ of prescribed volume. We...

[1]  Carlos J. S. Alves,et al.  The method of fundamental solutions applied to the calculation of eigensolutions for 2D plates , 2009 .

[2]  Friedemann Brock,et al.  An Isoperimetric Inequality for Eigenvalues of the Stekloff Problem , 2001 .

[3]  Dorin Bucur,et al.  Variational Methods in Shape Optimization Problems , 2005, Progress in Nonlinear Differential Equations and Their Applications.

[4]  Romain Petrides Bornes sur des valeurs propres et métriques extrémales , 2015 .

[5]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[6]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[7]  S. Yau,et al.  Eigenvalues of elliptic operators and geometric applications , 2004 .

[8]  C. Pommerenke Boundary Behaviour of Conformal Maps , 1992 .

[9]  Jimmy Lamboley,et al.  An extremal eigenvalue problem for the Wentzell-Laplace operator , 2014, 1401.7098.

[10]  D. Bucur,et al.  A Variational Approach to the Isoperimetric Inequality for the Robin Eigenvalue Problem , 2010 .

[11]  Iosif Polterovich,et al.  Shape optimization for low Neumann and Steklov eigenvalues , 2008, 0811.2617.

[12]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[13]  Braxton Osting,et al.  Optimization of spectral functions of Dirichlet-Laplacian eigenvalues , 2010, J. Comput. Phys..

[14]  Robert Weinstock,et al.  Inequalities for a Classical Eigenvalue Problem , 1954 .

[15]  Isoperimetric control of the spectrum of a compact hypersurface , 2010, 1007.0826.

[16]  Beniamin Bogosel,et al.  The method of fundamental solutions applied to boundary eigenvalue problems , 2016, J. Comput. Appl. Math..

[17]  J. Morel,et al.  Connected components of sets of finite perimeter and applications to image processing , 2001 .

[18]  Pedro Freitas,et al.  Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians , 2012, J. Optim. Theory Appl..

[19]  A. Chambolle,et al.  Continuity of neumann linear elliptic problems on varying two—dimensional bounded open sets , 1997 .

[20]  Giuseppe Buttazzo,et al.  An existence result for a class of shape optimization problems , 1993 .

[21]  Ahmad El Soufi,et al.  Isoperimetric control of the Steklov spectrum , 2011, 1103.2863.

[22]  Katja Gruenewald,et al.  Topics On Analysis In Metric Spaces , 2016 .

[23]  Braxton Osting,et al.  Computational Methods for Extremal Steklov Problems , 2016, SIAM J. Control. Optim..

[24]  L. Evans Measure theory and fine properties of functions , 1992 .

[25]  Menahem Schiffer,et al.  Some inequalities for Stekloff eigenvalues , 1974 .

[26]  S. Pfeifer The Geometry Of Fractal Sets , 2016 .