Three-dimensional benchmark for variable-density flow and transport simulation: matching semi-analytic stability modes for steady unstable convection in an inclined porous box

This benchmark for three-dimensional (3D) numerical simulators of variable-density groundwater flow and solute or energy transport consists of matching simulation results with the semi-analytical solution for the transition from one steady-state convective mode to another in a porous box. Previous experimental and analytical studies of natural convective flow in an inclined porous layer have shown that there are a variety of convective modes possible depending on system parameters, geometry and inclination. In particular, there is a well-defined transition from the helicoidal mode consisting of downslope longitudinal rolls superimposed upon an upslope unicellular roll to a mode consisting of purely an upslope unicellular roll. Three-dimensional benchmarks for variable-density simulators are currently (2009) lacking and comparison of simulation results with this transition locus provides an unambiguous means to test the ability of such simulators to represent steady-state unstable 3D variable-density physics.RésuméCe banc d′essai pour simulation numérique tridimensionnelle (3D) d′un flot d′écoulement souterrain de densité ou d′énergie variable permet de comparer les résultats semi-analytiques de transition d′un mode convectif en régime permanent à un autre, dans une boîte poreuse. Des études expérimentales et analytiques antérieures de flux convectif libre dans un milieu poreux incliné ont montré qu′il existe différents modes de convection possibles dépendant des paramètres du système, géométrie et inclinaison. En particulier, il existe une transition nette entre le mode hélicoïdal, consistant en écoulements longitudinaux descendants surimposés à un flux unicellulaire ascendant et un mode d′écoulement unicellulaire purement ascendant. Des bancs d′essai tri-dimensionnels pour simulations d′écoulements de densité variable manquent actuellement (2009) et la comparaison de simulations avec ce dispositif de transition montre clairement la capacité de tels simulateurs à représenter en 3 dimensions la physique des phénomènes instables en régime permanent.ResumenEste estándar de comparación para simuladores numéricos tridimensionales (3D) de flujo de agua subterránea de densidad variable y transporte de solutos o energía consiste en comparar los resultados de la simulación con la solución semianalítica para la transición de un modo convectivo de estado estacionario a otro de una capa porosa. Experimentos previos y estudios analíticos de flujo convectivo natural en una capa porosa inclinada han demostrado que hay una variedad de posibles modos convectivos dependiendo en los parámetros del sistema, la geometría y la inclinación. En particular, existe una transición bien definida desde el modo helicoidal que consiste en rollos inclinados pendiente abajo superpuestos por sobre un rollo unicelular pendiente arriba a un modo que consiste en un rollo unicelular puro y pendiente arriba. Se carece actualmente (2009) de estándar de comparación tridimensionales para simuladores de densidad variable y la comparación de los resultados de simulaciones con este lugar de transición proporciona un medio inambiguo para testear la habilidad de tales simuladores para representar la física del estado estacionario inestable de densidad variable en 3D.摘要这一变密度地下水流和溶质或能量运移的三维数值模拟基准由多孔介质自一个稳态对流模式向另一个稳态对流模式转变的半解析解匹配仿真结果 组成。已有对天然条件下倾斜多孔介质层中对流的实验和解析研究表明, 有很多取决于系统参数、几何形状和倾角的对流模式。特别是由下斜的纵向卷叠加上斜单卷的螺旋式模型到仅仅包括上斜单卷模式的转换, 研究较为清楚。目前 (2009) 缺少变密度流模拟的三维基准, 且模拟结果与这种转换点的比较为检验这种模拟器代表稳态的非稳定3D变密度物理机制的能力提供了确定的方法。ResumoEste teste de referência (benchmark) para simuladores numéricos tridimensionais (3D) de fluxo de água subterrânea de densidade variável e transporte de soluto ou energia consiste em ajustar os resultados da simulação com a solução semi-analítica para a transição de um modo convectivo estacionário para um outro numa caixa porosa. Os estudos experimentais e analíticos anteriores do fluxo convectivo natural numa camada porosa inclinada mostraram que existe uma variedade de modos convectivos possíveis dependendo dos parâmetros do sistema, da geometria e da inclinação. Em particular, há uma transição bem definida do modo helicoidal consistindo de cilindros longitudinais descendentes sobrepostos a um cilindro unicelular ascendente em relação a um modo consistindo num cilindro unicelular ascendente. Actualmente (2009) há uma falta de testes de referência tridimensionais para simuladores de densidade variável e a comparação dos resultados da simulação com este ponto de transição dá um meio inequívoco para testar a capacidade de tais simuladores representarem a física de densidade variável a 3D, instável e estacionária.

[1]  Jean-Paul Caltagirone,et al.  Solutions and stability criteria of natural convective flow in an inclined porous layer , 1985, Journal of Fluid Mechanics.

[2]  E. Holzbecher Modeling Density-Driven Flow in Porous Media , 1998 .

[3]  P. Hsieh,et al.  User's guide to Model Viewer, a program for three-dimensional visualization of ground-water model results , 2002 .

[4]  A. Bejan,et al.  Convection in Porous Media , 1992 .

[5]  T. Clement,et al.  Improving the worthiness of the Henry problem as a benchmark for density‐dependent groundwater flow models , 2004 .

[6]  C. Voss,et al.  Testing density-dependent groundwater models: two-dimensional steady state unstable convection in infinite, finite and inclined porous layers , 2004 .

[7]  R. Wooding,et al.  On a test case for density‐dependent groundwater flow and solute transport models: The Salt Lake Problem , 1999 .

[8]  R. Wooding,et al.  Convection in groundwater below an evaporating Salt Lake: 2. Evolution of fingers or plumes , 1997 .

[9]  G. Wittum,et al.  The saltpool benchmark problem – numerical simulation of saltwater upconing in a porous medium , 2002 .

[10]  Alyssa M. Dausman,et al.  SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport , 2008 .

[11]  Luca Bergamaschi,et al.  On the Reliability of Numerical Solutions of Brine Transport in Groundwater: Analysis of Infiltration from a Salt Lake , 2001 .

[12]  Olaf Kolditz,et al.  Variable-density flow and transport in porous media: approaches and challenges , 2002 .

[13]  Wolfgang Kinzelbach,et al.  Three-dimensional saltwater-freshwater fingering in porous media: contrast agent MRI as basis for numerical simulations. , 2007, Magnetic resonance imaging.

[14]  Using quantitative indicators to evaluate results from variable-density groundwater flow models , 2005 .

[15]  D. E. Muller A method for solving algebraic equations using an automatic computer , 1956 .

[16]  E. R. Lapwood Convection of a fluid in a porous medium , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  J. W. Elder Transient convection in a porous medium , 1967, Journal of Fluid Mechanics.

[18]  W. R. Souza,et al.  Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater‐saltwater transition zone , 1987 .

[19]  W. Kinzelbach,et al.  Three-dimensional physical benchmark experiments to test variable-density flow models , 2004 .

[20]  G. Ségol,et al.  Classic Groundwater Simulations: Proving and Improving Numerical Models , 1993 .

[21]  M. Combarnous,et al.  Natural convection in a sloping porous layer , 1973, Journal of Fluid Mechanics.

[22]  C. Voss,et al.  SutraGUI, a graphical-user interface for SUTRA, a model for ground-water flow with solute or energy transport , 2004 .

[23]  H. Oertel,et al.  Convective transport and instability phenomena , 1982 .

[24]  R. Wooding,et al.  Convection in groundwater below an evaporating Salt Lake: 1. Onset of instability , 1997 .

[25]  W. Kinzelbach,et al.  Numerical simulation of three-dimensional saltwater-freshwater fingering instabilities observed in a porous medium , 2006 .

[26]  H. Kooi,et al.  Modes of seawater intrusion during transgressions , 2000 .

[27]  Werner L. Frank,et al.  Finding Zeros of Arbitrary Functions , 1958, JACM.

[28]  P. Genthon,et al.  3-D Thermoconvection in an Anisotropic Inclined Sedimentary Layer , 1993 .

[29]  B. Ataie‐Ashtiani,et al.  A note on benchmarking of numerical models for density dependent flow in porous media , 2006 .

[30]  C. W. Horton,et al.  Convection Currents in a Porous Medium , 1945 .