A bifunctional electrolyte for activating Mg–Li hybrid batteries

A dual-salt electrolyte enabled a fast co-insertion cathode and an ultra-stable Mg anode, achieving a stable full battery with acceptable energy density.

[1]  Yumeng Shi,et al.  Recent Advances in Kinetic Optimizations of Cathode Materials for Rechargeable Magnesium Batteries , 2022, SSRN Electronic Journal.

[2]  Zaichun Liu,et al.  Solid Electrolyte Interface Regulated by Solvent‐in‐Water Electrolyte Enables High‐Voltage and Stable Aqueous Mg‐MnO2 Batteries , 2022, Advanced Energy Materials.

[3]  Xin Dai,et al.  Insight into the coordinating mechanism of multi-electron reaction and structural stability induced by K+ pre-intercalation for magnesium ions batteries , 2022, Nano Energy.

[4]  Lei Wang,et al.  PVP-Induced Synergistic Engineering of Interlayer, Self-doping, Active Surface and Vacancies in VS4 for Enhancing Magnesium Ions Storage and Durability , 2022, Energy Storage Materials.

[5]  Yanbin Shen,et al.  Self‐Activation Enables Cationic and Anionic Co‐Storage in Organic Frameworks , 2021, Advanced Energy Materials.

[6]  A. J. Bhattacharyya,et al.  Efficient Magnesium Plating and Stripping in DOL/DME-Mg(HMDS)2-Based Electrolytes and Application in Mg/S Batteries , 2021, ACS Applied Energy Materials.

[7]  Lei Cheng,et al.  Enabling Magnesium Anodes by Tuning the Electrode/Electrolyte Interfacial Structure. , 2021, ACS applied materials & interfaces.

[8]  Aobing Du,et al.  Current Design Strategies for Rechargeable Magnesium-Based Batteries. , 2021, ACS nano.

[9]  O. Borodin,et al.  Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics , 2021, Science.

[10]  Yi‐Chun Lu,et al.  Non-passivating Anion Adsorption Enables Reversible Magnesium Redox in Simple Non-nucleophilic Electrolytes , 2021, ACS Energy Letters.

[11]  Z. Seh,et al.  Using a Chloride-Free Magnesium Battery Electrolyte to Form a Robust Anode-Electrolyte Nanointerface. , 2021, Nano letters.

[12]  Qiaobao Zhang,et al.  Secondary Bonding Channel Design Induces Intercalation Pseudocapacitance toward Ultrahigh‐Capacity and High‐Rate Organic Electrodes , 2021, Advanced materials.

[13]  Dongsheng Xu,et al.  Hybrid MgCl2/AlCl3/Mg(TFSI)2 Electrolytes in DME Enabling High-Rate Rechargeable Mg Batteries. , 2021, ACS applied materials & interfaces.

[14]  Pengjian Zuo,et al.  Formation of an Artificial Mg2+-Permeable Interphase on Mg Anodes Compatible with Ether and Carbonate Electrolytes. , 2021, ACS applied materials & interfaces.

[15]  Xiaofei Yang,et al.  Dual‐Active‐Center of Polyimide and Triazine Modified Atomic‐Layer Covalent Organic Frameworks for High‐Performance Li Storage , 2021, Advanced Functional Materials.

[16]  D. Aurbach,et al.  Current status and future directions of multivalent metal-ion batteries , 2020, Nature Energy.

[17]  Xiao Ji,et al.  A Covalent Organic Framework for Fast-Charge and Durable Rechargeable Mg Storage. , 2020, Nano letters.

[18]  Ping Liu,et al.  Rechargeable Mg metal batteries enabled by a protection layer formed in vivo , 2020 .

[19]  Yan Yao,et al.  Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage. , 2020, Chemical reviews.

[20]  Aobing Du,et al.  A Stable Solid Electrolyte Interphase for Magnesium Metal Anode Evolved from a Bulky Anion Lithium Salt , 2019, Advanced materials.

[21]  Jing Tian,et al.  Li-salt mediated Mg-rhodizonate batteries based on ultra-large cathode grains enabled by K-ion pillaring , 2019, Energy Storage Materials.

[22]  Weishan Li,et al.  Kinetic surface control for improved magnesium-electrolyte interfaces for magnesium ion batteries , 2019, Energy Storage Materials.

[23]  R. Deivanayagam,et al.  Progress in development of electrolytes for magnesium batteries , 2019, Energy Storage Materials.

[24]  Yan Yao,et al.  Directing Mg-Storage Chemistry in Organic Polymers toward High-Energy Mg Batteries , 2019, Joule.

[25]  T. Ichitsubo,et al.  Fast Diffusion of Multivalent Ions Facilitated by Concerted Interactions in Dual‐Ion Battery Systems , 2018, Advanced Energy Materials.

[26]  Yong Lu,et al.  Molecular Electrostatic Potential: A New Tool to Predict the Lithiation Process of Organic Battery Materials. , 2018, The journal of physical chemistry letters.

[27]  Xuejun Zhou,et al.  High-Capacity Mg-Organic Batteries Based on Nanostructured Rhodizonate Salts Activated by Mg-Li Dual-Salt Electrolyte. , 2018, ACS nano.

[28]  Tao Gao,et al.  An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes , 2018, Nature Chemistry.

[29]  Xiulin Fan,et al.  Reducing Mg Anode Overpotential via Ion Conductive Surface Layer Formation by Iodine Additive , 2018, Advanced Energy Materials.

[30]  Y. Wang,et al.  Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry , 2018, Nature Communications.

[31]  Chilin Li,et al.  Dual‐Salt Mg‐Based Batteries with Conversion Cathodes , 2015 .

[32]  C. Ling,et al.  How General is the Conversion Reaction in Mg Battery Cathode: A Case Study of the Magnesiation of α-MnO2 , 2015 .

[33]  Qichun Zhang,et al.  Pushing Up Lithium Storage through Nanostructured Polyazaacene Analogues as Anode. , 2015, Angewandte Chemie.

[34]  Chengyuan Wang,et al.  Nanostructured Conjugated Ladder Polymers for Stable and Fast Lithium Storage Anodes with High‐Capacity , 2015 .

[35]  Kang Xu,et al.  Hybrid Mg2+/Li+ Battery with Long Cycle Life and High Rate Capability , 2015 .

[36]  Muratahan Aykol,et al.  Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. , 2014, Journal of the American Chemical Society.

[37]  Jae-Hun Kim,et al.  Metallic anodes for next generation secondary batteries. , 2013, Chemical Society reviews.

[38]  Yanli Zhao,et al.  Microporous polymelamine network for highly selective CO2 adsorption , 2013 .

[39]  Ruigang Zhang,et al.  α-MnO2 as a cathode material for rechargeable Mg batteries , 2012 .

[40]  Ju-tang Sun,et al.  How many lithium ions can be inserted onto fused C6 aromatic ring systems? , 2012, Angewandte Chemie.

[41]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..