An asymptotic preserving well-balanced scheme for the isothermal fluid equations in low-temperature plasmas at low-pressure

Abstract We present a novel numerical scheme for the efficient and accurate solution of the isothermal two-fluid (electron + ion) equations coupled to Poisson's equation for low-temperature plasmas at low-pressure. The model considers electrons and ions as separate fluids, comprising the electron inertia and space charge regions. The discretization of this system with standard explicit schemes is constrained by very restrictive time steps and cell sizes related to the resolution of the Debye length, electron plasma frequency, and electron sound waves. Both sheath and electron inertia are fundamental to fully explain the physics in low-pressure and low-temperature plasmas. However, most of the phenomena of interest for fluid models occur at speeds much slower than the electron thermal speed and are quasi-neutral, except in small charged regions. A numerical method that is able to simulate efficiently and accurately all these regimes is a challenge due to the multiscale character of the problem. In this work, we present a scheme based on the Lagrange-projection operator splitting that preserves the asymptotic regime where the plasma is quasi-neutral with massless electrons. As a result, the quasi-neutral regime is treated without the need of an implicit solver nor the resolution of the Debye length and electron plasma frequency. Additionally, the scheme proves to accurately represent the dynamics of the electrons both at low speeds and when the electron speed is comparable to the thermal speed. In addition, a well-balanced treatment of the ion source terms is proposed in order to tackle problems where the ion temperature is very low compared to the electron temperature. The scheme significantly improves the accuracy both in the quasi-neutral limit and in the presence of plasma sheaths when the Debye length is resolved. In order to assess the performance of the scheme in low-temperature plasmas conditions, we propose two specifically designed test-cases: a quasi-neutral two-stream periodic perturbation with analytical solution and a low-temperature discharge that includes sheaths. The numerical strategy, its accuracy, and computational efficiency are assessed on these two discriminating configurations.

[1]  Uri Shumlak,et al.  A high resolution wave propagation scheme for ideal Two-Fluid plasma equations , 2006, J. Comput. Phys..

[2]  J. Adam,et al.  Anomalous conductivity in Hall thrusters: Effects of the non-linear coupling of the electron-cyclotron drift instability with secondary electron emission of the walls , 2013 .

[3]  Bhuvana Srinivasan,et al.  Continuum Kinetic and Multi-Fluid Simulations of Classical Sheaths , 2016, 1610.06529.

[4]  Randall J. LeVeque,et al.  A study of numerical methods for hyperbolic conservation laws with stiff source terms , 1990 .

[5]  N. N. Mansour,et al.  Multicomponent fluid model for two-temperature plasmas derived from kinetic theory : application to magnetic reconnection , 2018, Journal of Physics: Conference Series.

[6]  Lewi Tonks,et al.  A General Theory of the Plasma of an Arc , 1929 .

[7]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[8]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[9]  Uri Shumlak,et al.  A Discontinuous Galerkin Method for Ideal Two-Fluid Plasma Equations , 2010, 1003.4542.

[10]  G. Hagelaar,et al.  Speeding Up Fluid Models for Gas Discharges by Implicit Treatment of the Electron Energy Source Term , 2000 .

[11]  Andrea Lani,et al.  A GPU-enabled implicit Finite Volume solver for the ideal two-fluid plasma model on unstructured grids , 2018, Comput. Phys. Commun..

[12]  J. Adam,et al.  Study of stationary plasma thrusters using two-dimensional fully kinetic simulations , 2004 .

[13]  Matthew M. Hopkins,et al.  Theory of the Electron Sheath and Presheath , 2015, 1510.03490.

[14]  Uri Shumlak,et al.  Approximate Riemann solver for the two-fluid plasma model , 2003 .

[15]  Christophe Chalons,et al.  A High-Order Discontinuous Galerkin Lagrange Projection Scheme for the Barotropic Euler Equations , 2017 .

[16]  Samiran Ghosh,et al.  Effect of electron inertia on dispersive properties of Alfvén waves in cold plasmas , 2017 .

[17]  B. Després,et al.  Inégalité entropique pour un solveur conservatif du système de la dynamique des gaz en coordonnées de Lagrange , 1997 .

[18]  Ph. Guittienne,et al.  Two-fluid solutions for Langmuir probes in collisionless and isothermal plasma, over all space and bias potential , 2018, Physics of Plasmas.

[19]  Binita Borgohain,et al.  Ion and electron sheath characteristics in a low density and low temperature plasma , 2017 .

[20]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[21]  P. Dmitruk,et al.  Effects of electron inertia in collisionless magnetic reconnection , 2013, 1312.2437.

[22]  Marshall Slemrod,et al.  Quasi-Neutral Limit for Euler-Poisson System , 2001, J. Nonlinear Sci..

[23]  D. Petersohn Principles of plasma discharges and materials processing. Von. M. A. Liebermann und A. J. Lichtenberg, XXVI, 572S., John Wiley & Sons, Inc., New York 1994, £ 54.00, ISBN 0-471-00577-0 , 1995 .

[24]  L. Garrigues,et al.  E × B electron drift instability in Hall thrusters: Particle-in-cell simulations vs. theory , 2018, Physics of Plasmas.

[25]  Alfredo Bermúdez,et al.  Upwind methods for hyperbolic conservation laws with source terms , 1994 .

[26]  J. Holgate,et al.  Numerical implementation of a cold-ion, Boltzmann-electron model for nonplanar plasma-surface interactions , 2018 .

[27]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[28]  J. Adam,et al.  High-frequency electron drift instability in the cross-field configuration of Hall thrusters , 2006 .

[29]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[30]  Vladimir Kolobov,et al.  Kinetic Solvers with Adaptive Mesh in Phase Space for Low-Temperature Plasmas , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Samuel Kokh,et al.  An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes , 2017, J. Comput. Phys..

[32]  Manuel Torrilhon,et al.  Affordable robust moment closures for CFD based on the maximum-entropy hierarchy , 2013, J. Comput. Phys..

[33]  S. Abolmasov,et al.  Commentary: Rotating structures in low temperature magnetized plasmas - insight from particle simulations , 2015, Front. Phys..

[34]  Jian-Guo Liu,et al.  Analysis of an Asymptotic Preserving Scheme for the Euler-Poisson System in the Quasineutral Limit , 2008, SIAM J. Numer. Anal..

[35]  L. Garrigues,et al.  Physics, simulation and diagnostics of Hall effect thrusters , 2008 .

[36]  Florian De Vuyst,et al.  Lagrange-Flux Schemes: Reformulating Second-Order Accurate Lagrange-Remap Schemes for Better Node-Based HPC Performance , 2016, 1607.08710.

[37]  R. K. Wakerling,et al.  The characteristics of electrical discharges in magnetic fields , 1949 .

[38]  Annemie Bogaerts,et al.  Special issue on numerical modelling of low‐temperature plasmas for various applications — part II: Research papers on numerical modelling for various plasma applications , 2017 .

[39]  E. Ahedo,et al.  Vanishing of the negative anode sheath in a Hall thruster , 2005 .

[40]  E. Ahedo,et al.  Model of the plasma discharge in a Hall thruster with heat conduction , 2002 .

[41]  P. Colella,et al.  A Conservative Finite Difference Method for the Numerical Solution of Plasma Fluid Equations , 1999 .

[42]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[43]  Marc Massot,et al.  Kinetic Theory of Plasmas: Translational Energy , 2007, 0711.0681.

[44]  David Tskhakaya,et al.  The plasma–sheath matching problem , 2005 .

[45]  Jannis Teunissen,et al.  Comparing plasma fluid models of different order for 1D streamer ionization fronts , 2015 .

[46]  Andrea Lani,et al.  A Versatile Numerical Method for the Multi-Fluid Plasma Model in Partially- and Fully-Ionized Plasmas , 2018 .

[47]  R. Schrittwieser,et al.  Electron-rich sheath dynamics. II. Sheath ionization and relaxation instabilities , 2011 .

[48]  K. Riemann,et al.  The Bohm criterion and sheath formation , 1991 .

[49]  Meng-Sing Liou,et al.  A sequel to AUSM, Part II: AUSM+-up for all speeds , 2006, J. Comput. Phys..

[50]  B. Cuenot,et al.  A 10-moment fluid numerical solver of plasma with sheaths in a Hall Effect Thruster , 2018, 2018 Joint Propulsion Conference.

[51]  Samuel Kokh,et al.  An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes , 2016 .

[52]  S. I. Braginskii Transport Processes in a Plasma , 1965 .

[53]  Gautier Dakin,et al.  High-order accurate Lagrange-remap hydrodynamic schemes on staggered Cartesian grids , 2016 .

[54]  P. Mora,et al.  Plasma expansion into a vacuum. , 2003, Physical review letters.

[55]  Laurent Gosse,et al.  Computing qualitatively correct approximations of balance laws : exponential-fit, well-balanced and asymptotic-preserving , 2013 .

[56]  Philip L. Roe,et al.  Upwind differencing schemes for hyperbolic conservation laws with source terms , 1987 .

[57]  Stéphane Jaouen,et al.  High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics , 2010 .

[58]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[59]  Pascal Chabert,et al.  Physics of radio-frequency plasmas , 2011 .

[60]  Detlef Loffhagen,et al.  Derivation of Moment Equations for the Theoretical Description of Electrons in Nonthermal Plasmas , 2013 .

[61]  I. Boyd,et al.  One-dimensional hybrid-direct kinetic simulation of the discharge plasma in a Hall thruster , 2012 .

[62]  Mark J. Kushner,et al.  Hybrid modelling of low temperature plasmas for fundamental investigations and equipment design , 2009 .

[63]  Francis F. Chen,et al.  Introduction to Plasma Physics and Controlled Fusion , 2015 .

[64]  Pierre Crispel,et al.  Trois formulations d'un modèle de plasma quasi-neutre avec courant non nul , 2004 .

[65]  Uri Shumlak,et al.  Advanced physics calculations using a multi-fluid plasma model , 2011, Comput. Phys. Commun..

[66]  Marc Massot,et al.  A new numerical strategy with space-time adaptivity and error control for multi-scale streamer discharge simulations , 2011, J. Comput. Phys..

[67]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[68]  Annemie Bogaerts,et al.  Special Issue on Numerical Modelling of Low-Temperature Plasmas for Various Applications – Part I: Review and Tutorial Papers on Numerical Modelling Approaches , 2017 .

[69]  Eric Robert,et al.  Numerical and experimental study of the dynamics of a μs helium plasma gun discharge with various amounts of N2 admixture , 2016 .

[70]  Uri Shumlak,et al.  A blended continuous-discontinuous finite element method for solving the multi-fluid plasma model , 2016, J. Comput. Phys..

[71]  C. Groth,et al.  Towards physically realizable and hyperbolic moment closures for kinetic theory , 2009 .

[72]  Pierre Degond,et al.  An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit , 2007, J. Comput. Phys..

[73]  Raphaël Loubère,et al.  Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime , 2017, J. Comput. Phys..

[74]  Christophe Chalons,et al.  High-order fully well-balanced Lagrange-projection scheme for shallow water , 2020, Communications in Mathematical Sciences.

[75]  Pierre Degond,et al.  Quasi-neutral fluid models for current-carrying plasmas , 2005 .

[76]  J. E. Allen,et al.  On the ion front of a plasma expanding into a vacuum , 2014 .

[77]  Anne Bourdon,et al.  Numerical study on the time evolutions of the electric field in helium plasma jets with positive and negative polarities , 2018 .

[78]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[79]  Marc Massot,et al.  Plasma-sheath transition in multi-fluid models with inertial terms under low pressure conditions: Comparison with the classical and kinetic theory , 2019 .

[80]  B. Srinivasan,et al.  Role of electron inertia and electron/ion finite Larmor radius effects in low-beta, magneto-Rayleigh-Taylor instability , 2018, Physics of Plasmas.

[81]  Ammar Hakim,et al.  Using the maximum entropy distribution to describe electrons in reconnecting current sheets , 2018, Physics of Plasmas.

[82]  S. Baalrud,et al.  Theory for the anomalous electron transport in Hall effect thrusters. I. Insights from particle-in-cell simulations , 2016 .

[83]  Roberto A. Clemente,et al.  Electron inertia effects on the planar plasma sheath problem , 2011 .

[84]  Andrea Lani,et al.  Fully-implicit finite volume method for the ideal two-fluid plasma model , 2018, Comput. Phys. Commun..

[85]  P. Degond Asymptotic-Preserving Schemes for Fluid Models of Plasmas , 2011, 1104.1869.

[86]  Bruno Després,et al.  A MINIMIZATION FORMULATION OF A BI-KINETIC SHEATH , 2016 .

[87]  Daniel Han-Kwan,et al.  Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries , 2011 .