A balanced truncation-based strategy for optimal control of evolution problems

In this paper, we present a balanced truncation based strategy for the numerical solution of optimal control problems governed by nonlinear evolution partial differential equations. The idea consists in utilizing a balanced truncation model reduction method for the efficient solution of the semi-discretized adjoint system, while the nonlinear state equations are fully solved. Our strategy is analysed as a descent method in function spaces and global convergence results are presented. In combination with a Broyden–Fletcher–Goldfarb–Shanno update also superlinear convergence is verified. Numerical examples are given to illustrate the behaviour of the proposed method for different problems.

[1]  F. Tröltzsch Optimale Steuerung partieller Differentialgleichungen , 2005 .

[2]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[3]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[4]  E. Polak An historical survey of computational methods in optimal control. , 1973 .

[5]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[6]  Peter Benner,et al.  Factorized Solution of Lyapunov Equations Based on Hierarchical Matrix Arithmetic , 2006, Computing.

[7]  Enrique S. Quintana-Ortí,et al.  State-space truncation methods for parallel model reduction of large-scale systems , 2003, Parallel Comput..

[8]  A. Griewank The local convergence of Broyden-like methods on Lipschitzian problems in Hilbert spaces , 1987 .

[9]  J. Marsden,et al.  A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .

[10]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[11]  Jack K. Hale,et al.  Infinite dimensional dynamical systems , 1983 .

[12]  C. Kelley,et al.  Quasi Newton methods and unconstrained optimal control problems , 1986, 1986 25th IEEE Conference on Decision and Control.

[13]  A. Laub,et al.  Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms , 1987 .

[14]  C. T. Kelley,et al.  A New Proof of Superlinear Convergence for Broyden's Method in Hilbert Space , 1991, SIAM J. Optim..

[15]  Henrik Sandberg,et al.  Balanced truncation of linear time-varying systems , 2004, IEEE Transactions on Automatic Control.

[16]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[17]  Leonard M. Silverman,et al.  Linear time-variable systems: Balancing and model reduction , 1983 .

[18]  F.-S. Kupfer,et al.  An Infinite-Dimensional Convergence Theory for Reduced SQP Methods in Hilbert Space , 1996, SIAM J. Optim..

[19]  Jacob K. White,et al.  A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[20]  Michal Rewienski,et al.  A trajectory piecewise-linear approach to model order reduction of nonlinear dynamical systems , 2003 .

[21]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[22]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[23]  Thilo Penzl,et al.  A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..

[24]  J. M. A. Scherpen,et al.  Balancing for nonlinear systems , 1993 .

[25]  RewieÅ ski,et al.  A trajectory piecewise-linear approach to model order reduction of nonlinear dynamical systems , 2003 .

[26]  Thomas Slawig,et al.  Adjoint gradients compared to gradients from algorithmic differentiation in instantaneous control of the Navier-Stokes equations , 2003, Optim. Methods Softw..

[27]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[28]  Peter Benner,et al.  Dimension Reduction of Large-Scale Systems , 2005 .

[29]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[30]  M. Krasnosel’skiǐ,et al.  Integral operators in spaces of summable functions , 1975 .

[31]  Jacob K. White,et al.  Low-Rank Solution of Lyapunov Equations , 2004, SIAM Rev..

[32]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[33]  A. Walther,et al.  Evaluating Gradients in Optimal Control: Continuous Adjoints Versus Automatic Differentiation , 2004 .

[34]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[35]  Tatjana Stykel,et al.  Gramian-Based Model Reduction for Descriptor Systems , 2004, Math. Control. Signals Syst..

[36]  Tatjana Stykel,et al.  Balanced truncation model reduction for semidiscretized Stokes equation , 2006 .

[37]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[38]  T. Kailath,et al.  On generalized balanced realizations , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[39]  K. Afanasiev,et al.  Adaptive Control Of A Wake Flow Using Proper Orthogonal Decomposition1 , 2001 .

[40]  Edda Klipp,et al.  Biochemical network models simplified by balanced truncation , 2005, The FEBS journal.