ZnS–MoS2 nano-heterostructure: efficient photocatalyst for dye removal under sunlight

[1]  K. Souri,et al.  Noble-Free Nanophotocatalyst of TixFeyLamOz for Efficient Photocatalytic C–N Cross-Coupling Reactions under Visible Light , 2023, ACS Applied Nano Materials.

[2]  Seok-won Kang,et al.  Photocatalytic Degradation of Eriochrome Black-T Using BaWO4/MoS2 Composite , 2022, Catalysts.

[3]  A. Ahmadpour,et al.  Enhance the photocatalytic performance of TiO2 nano-semiconductor by simultaneously doping of transition and lanthanide elements for the C C homocoupling reaction under sunlight irradiation , 2022, Nano-Structures & Nano-Objects.

[4]  S. Sriram,et al.  Photocatalytic dye degradation of V2O5 Nanoparticles—An experimental and DFT analysis , 2021 .

[5]  Hyunmin Kim,et al.  Photocatalytic degradation of tetracycline antibiotics using hydrothermally synthesized two-dimensional molybdenum disulfide/titanium dioxide composites. , 2021, Journal of colloid and interface science.

[6]  M. Ramesh Cuo as efficient photo catalyst for photocatalytic decoloration of wastewater containing Azo dyes , 2021, Water Practice and Technology.

[7]  S. Ray,et al.  MoS2 Nanosheet/ZnS Composites for the Visible-Light-Assisted Photocatalytic Degradation of Oxytetracycline , 2021 .

[8]  G. Solanki,et al.  Photocatalytic degradation of organic dyes by Ni (25%) doped WSe2 nanosheets , 2021 .

[9]  N. Manyala,et al.  Polypyrrole-Promoted rGO–MoS2 Nanocomposites for Enhanced Photocatalytic Conversion of CO2 and H2O to CO, CH4, and H2 Products , 2020 .

[10]  Mirgender Kumar,et al.  Enhanced photocatalytic degradation and hydrogen evolution of ZnS nanoparticles by (Co, Er) co-doping , 2020 .

[11]  P. Cheng,et al.  An Efficient and Stable MoS2/Zn0.5Cd0.5S Nanocatalyst for Photocatalytic Hydrogen Evolution. , 2020, Chemistry.

[12]  S. Kowsalya,et al.  Synthesis and Characterization of ZnS Nanoparticles Using Co-precipitation Method , 2020 .

[13]  D. Ayodhya,et al.  Facile fabrication, characterization and efficient photocatalytic activity of surfactant free ZnS, CdS and CuS nanoparticles , 2019, Journal of Science: Advanced Materials and Devices.

[14]  Yi Zhou,et al.  Dual II heterojunctions metallic phase MoS2/ZnS/ZnO ternary composite with superior photocatalytic performance for removing contaminants. , 2019, Chemistry.

[15]  C. Sumesh,et al.  Two-Step Facile Preparation of MoS2·ZnO Nanocomposite as Efficient Photocatalyst for Methylene Blue (Dye) Degradation , 2018, Electronic Materials Letters.

[16]  I. Bratchikova,et al.  Doped rare and transition metal perovskite-type titanate nanoparticles: A new method for developing synthesizing and photocatalytic ability , 2018, Journal of Molecular Liquids.

[17]  Zhiyong Liu,et al.  Hydrothermal synthesis of In2O3 nanoparticles hybrid twins hexagonal disk ZnO heterostructures for enhanced photocatalytic activities and stability , 2017, Nanoscale Research Letters.

[18]  J. Shim,et al.  Synthesis, structural, optical and photocatalytic properties of CdS/ZnS core/shell nanoparticles , 2017 .

[19]  Y. Hu,et al.  MoS2 as a co‐catalyst for photocatalytic hydrogen production from water , 2016 .

[20]  B. Wei,et al.  Au NPs@MoS2 Sub-Micrometer Sphere-ZnO Nanorod Hybrid Structures for Efficient Photocatalytic Hydrogen Evolution with Excellent Stability. , 2016, Small.

[21]  Shumei Wang,et al.  Starch-assisted synthesis and optical properties of ZnS nanoparticles , 2016 .

[22]  Hongwei Lu,et al.  Constructing Anatase TiO2 Nanosheets with Exposed (001) Facets/Layered MoS2 Two-Dimensional Nanojunctions for Enhanced Solar Hydrogen Generation , 2016 .

[23]  C. H. Bhosale,et al.  Photoelectrocatalytic degradation of methyl blue using sprayed WO3 thin films , 2016, Journal of Materials Science: Materials in Electronics.

[24]  D. Yong,et al.  MoS2–GO nanocomposites synthesized via a hydrothermal hydrogel method for solar light photocatalytic degradation of methylene blue , 2015 .

[25]  G. P. Rangaiah,et al.  Photocatalytic Degradation of Methylene Blue by Titanium Dioxide: Experimental and Modeling Study , 2014 .

[26]  C. H. Bhosale,et al.  Photoelectrochemical degradation of selected aromatic molecules , 2013 .

[27]  P. Alvarez,et al.  Applications of nanotechnology in water and wastewater treatment. , 2013, Water research.

[28]  M. T. Martínez,et al.  Preparation of a TiO 2 -MoS 2 nanoparticle-based composite by solvothermal method with enhanced photoactivity for the degradation of organic molecules in water under UV light , 2011 .

[29]  Amit Bhatnagar,et al.  A review of emerging adsorbents for nitrate removal from water , 2011 .

[30]  Y. Hakuta,et al.  Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water , 2010, Materials.

[31]  G. Colón,et al.  Sunlight highly photoactive Bi2WO6-TiO2 heterostructures for rhodamine B degradation. , 2010, Chemical communications.

[32]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[33]  Wei Zhang,et al.  Surface engineered active photocatalysts without noble metals: CuS–ZnxCd1−xS nanospheres by one-step synthesis , 2009 .

[34]  Cheng Sun,et al.  Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism. , 2009, The journal of physical chemistry. A.

[35]  Sean C. Smith,et al.  Solvothermal synthesis and photoreactivity of anatase TiO(2) nanosheets with dominant {001} facets. , 2009, Journal of the American Chemical Society.

[36]  Z. Zou,et al.  Synthesis and photocatalytic characterization of a new photocatalyst BaZrO3 , 2008 .

[37]  Can Li,et al.  Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as Cocatalyst under visible light irradiation. , 2008, Journal of the American Chemical Society.

[38]  Peidong Yang,et al.  Shape Control of Colloidal Metal Nanocrystals , 2008 .

[39]  G. Galli,et al.  Electronic properties of MoS2 nanoparticles , 2007 .

[40]  J. Georgieva,et al.  Enhanced photocatalytic activity of electrosynthesised tungsten trioxide–titanium dioxide bi-layer coatings under ultraviolet and visible light illumination , 2007 .

[41]  R. Mendelsohn,et al.  Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. , 2006, Biochimica et biophysica acta.

[42]  Christopher K. Ober,et al.  Nanocomposite Materials for Optical Applications , 1997 .

[43]  Hui Liu,et al.  Efficient synthesis of MoS2 nanoparticles modified TiO2 nanobelts with enhanced visible-light-driven photocatalytic activity , 2015 .

[44]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[45]  D. Segal Chemical synthesis of ceramic materials , 1997 .

[46]  J. Villermaux,et al.  Production of hydrogen by direct thermal decomposition of water , 1983 .

[47]  A. A. Yadav,et al.  Visible light activated MoS2/ZnO composites for photocatalytic degradation of ciprofloxacin antibiotic and hydrogen production , 2022, Journal of Photochemistry and Photobiology A: Chemistry.