Fuzzy Integral for Classification and Feature Extraction

We describe in this paper the use of fuzzy integral in problems of supervised classification. The approach, which can be viewed as a information fusion model, is embedded into the framework of fuzzy pattern matching. Results on various data set are given, with comparisons. Lastly, the problem of feature extraction is addressed.

[1]  James M. Keller,et al.  A fuzzy K-nearest neighbor algorithm , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[2]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[3]  James M. Keller,et al.  Information fusion in computer vision using the fuzzy integral , 1990, IEEE Trans. Syst. Man Cybern..

[4]  M. Grabisch The application of fuzzy integrals in multicriteria decision making , 1996 .

[5]  Michel Grabisch,et al.  A new algorithm for identifying fuzzy measures and its application to pattern recognition , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[6]  Michel Grabisch,et al.  The representation of importance and interaction of features by fuzzy measures , 1996, Pattern Recognit. Lett..

[7]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[8]  Michel Grabisch,et al.  Classification by fuzzy integral: performance and tests , 1994, CVPR 1994.

[9]  Sholom M. Weiss,et al.  An Empirical Comparison of Pattern Recognition, Neural Nets, and Machine Learning Classification Methods , 1989, IJCAI.

[10]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[11]  M. Sugeno FUZZY MEASURES AND FUZZY INTEGRALS—A SURVEY , 1993 .

[12]  G. Choquet Theory of capacities , 1954 .

[13]  Michel Grabisch,et al.  An axiomatic approach to the concept of interaction among players in cooperative games , 1999, Int. J. Game Theory.

[14]  Hung T. Nguyen,et al.  Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference , 1994 .

[15]  James M. Keller,et al.  Multiple spectral image segmentation using fuzzy techniques , 1988, International Journal of Approximate Reasoning.

[16]  Michel Grabisch,et al.  Alternative Representations of Discrete Fuzzy Measures for Decision Making , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[17]  D. Dubois,et al.  Weighted fuzzy pattern matching , 1988 .

[18]  M. Sugeno,et al.  Multi-attribute classification using fuzzy integral , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[19]  L. S. Shapley,et al.  17. A Value for n-Person Games , 1953 .

[20]  D. Dubois,et al.  On Possibility/Probability Transformations , 1993 .

[21]  Sung-Bae Cho,et al.  Combining multiple neural networks by fuzzy integral for robust classification , 1995, IEEE Trans. Syst. Man Cybern..

[22]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[23]  Anca L. Ralescu,et al.  Modeling of Natural Objects Including Fuzziness and Application to Image Understanding , 1994 .

[24]  Kazuo Kyuma,et al.  Fuzzy Information Fusion in a Face Recognition System , 1995, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[25]  Sankar K. Pal,et al.  Fuzzy models for pattern recognition , 1992 .

[26]  新家 健精 Decisions with Multiple Objectives Preferences and Value tradeoffs : by Ralph L. Keeney, Howard Raiffa John Willey , 1981 .

[27]  Michel Grabisch,et al.  Fuzzy aggregation of numerical preferences , 1999 .

[28]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[29]  Hans-Jürgen Zimmermann,et al.  Improved feature selection and classification by the 2-additive fuzzy measure , 1999, Fuzzy Sets Syst..

[30]  Sankar K. Pal,et al.  Fuzzy Mathematical Approach to Pattern Recognition , 1986 .