On locally reversible languages

There exist several works that study the class of reversible languages defined as the union closure of 0-reversible languages, their properties and suitable representations. In this work we define and study the class of locally reversible languages, defined as the union closure of k-reversible languages. We characterize the class and prove that it is a local (positive) variety of formal languages. We also extend the definition of quasi-reversible automata to deal with locally reversible languages and propose a polynomial algorithm to obtain, for any given locally k-reversible language, a quasi-k-reversible automaton.

[1]  M. Dal Cin,et al.  The Algebraic Theory of Automata , 1980 .

[2]  Sylvain Lombardy On the Construction of Reversible Automata for Reversible Languages , 2002, ICALP.

[3]  Jean-Éric Pin,et al.  On Reversible Automata , 1992, LATIN.

[4]  Pedro V. Silva On Free Inverse Monoid Languages , 1996, RAIRO Theor. Informatics Appl..

[5]  Jean-Éric Pin,et al.  Varieties Generated by Certain Models of Reversible Finite Automata , 2010, Chic. J. Theor. Comput. Sci..

[6]  Damián López,et al.  On the efficient construction of quasi-reversible automata for reversible languages , 2008, Inf. Process. Lett..

[7]  Aurélien Lemay,et al.  Learning Regular Languages Using Non Deterministic Finite Automata , 2000, ICGI.

[8]  Jean-Eric Pin,et al.  A variety theorem without complementation , 1995 .

[9]  Jean-Éric Pin On the Language Accepted by Finite Reversible Automata , 1987, ICALP.

[10]  Aurélien Lemay,et al.  Learning regular languages using RFSAs , 2004, Theor. Comput. Sci..

[11]  T. E. Hall Biprefix Codes, Inverse Semigroups and Syntactic Monoids of Injective Automata , 1984, Theor. Comput. Sci..

[12]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[13]  Aurélien Lemay,et al.  Learning Regular Languages Using RFSA , 2001, ALT.

[14]  Pierre-Cyrille Héam A Lower Bound For Reversible Automata , 2000, RAIRO Theor. Informatics Appl..

[15]  Pedro García,et al.  Learning in varieties of the form V*LI from positive data , 2006, Theor. Comput. Sci..

[16]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[17]  Berndt Farwer,et al.  ω-automata , 2002 .

[18]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[19]  Dana Angluin,et al.  Inference of Reversible Languages , 1982, JACM.

[20]  Abraham Ginzburg,et al.  Algebraic theory of automata , 1968 .

[21]  Aurélien Lemay,et al.  Residual Finite State Automata , 2002, Fundam. Informaticae.