Cluster-temporal browsing of large news video databases

The paper describes cluster-temporal browsing of news video databases. Cluster-temporal browsing combines content similarities and temporal adjacency into a single representation. Visual, conceptual and lexical features are used to organize and view similar shot content. Interactive experiments with eight test users have been carried out using a database of roughly 60 hours of news video. Results indicate improvements in browsing efficiency when automatic speech recognition transcripts are incorporated into browsing by visual similarity. The cluster-temporal browsing application received positive comments from the test users and performed well in overall comparison with interactive video retrieval systems in TRECVID 2003 evaluation.