Effect of biaxial strain on grain growth in nanocrystalline films: Coupling between grain-boundary energy and strain energy

[1]  Hoang‐Phuong Phan,et al.  Engineering Stress in Thin Films: An Innovative Pathway Toward 3D Micro and Nanosystems. , 2021, Small.

[2]  Yinong Shi,et al.  Tensile strain induced texture evolution in a Ni–Mo alloy with extremely fine nanotwinned columnar grains , 2021 .

[3]  C. Schuh,et al.  Stability of nanocrystalline metals: The role of grain-boundary chemistry and structure , 2021, MRS Bulletin.

[4]  Yongchang Liu,et al.  Supermodulus effect by grain-boundary wetting in nanostructured multilayers , 2021 .

[5]  Yongchang Liu,et al.  On the competition between synchronous oxidation and preferential oxidation in Cu-Zr-Al metallic glasses , 2020, Corrosion Science.

[6]  Yongchang Liu,et al.  Anomalous texture development induced by grain yielding anisotropy in Ni and Ni-Mo alloys , 2020 .

[7]  I. Szlufarska,et al.  Wear-induced microstructural evolution of nanocrystalline aluminum and the role of zirconium dopants , 2020, Acta Materialia.

[8]  Yang Wang,et al.  High thermal stability of nanostructured Al mediated by heterophase interfaces and nanotwinning , 2020 .

[9]  Zumin Wang,et al.  Temperature-dependent evolution of strength of nanocrystalline Ni(Mo) alloys at the Mo solubility limit , 2020, Materials Science and Engineering: A.

[10]  Yifan Zhang,et al.  Tailoring the thermal stability of nanocrystalline Ni alloy by thick grain boundaries , 2020 .

[11]  Ge Wu,et al.  Nanostructural metallic materials: Structures and mechanical properties , 2020, Materials Today.

[12]  T. Suo,et al.  High temperature creep resistance of a thermally stable nanocrystalline Fe-5 at.% Zr steel , 2020 .

[13]  K. Lu,et al.  Rapid heating induced ultrahigh stability of nanograined copper , 2020, Science Advances.

[14]  A. Chokshi Grain Boundary Processes in Strengthening, Weakening, and Superplasticity , 2019, Advanced Engineering Materials.

[15]  Xiuyan Li,et al.  Improving sustainability with simpler alloys , 2019, Science.

[16]  Jianqing Jiang,et al.  Fatigue resistance of nanotwinned high-entropy alloy films , 2019, Materials Science and Engineering: A.

[17]  A. Ceguerra,et al.  Grain size stabilization of mechanically alloyed nanocrystalline Fe-Zr alloys by forming highly dispersed coherent Fe-Zr-O nanoclusters , 2018, Acta Materialia.

[18]  K. Lu,et al.  Thermal analysis of electrodeposited nano-grained Ni-Mo alloys , 2018, Scripta Materialia.

[19]  F. Liu,et al.  An intrinsic correlation between driving force and energy barrier upon grain boundary migration , 2018, Journal of Materials Science & Technology.

[20]  Blythe G. Clark,et al.  Achieving Ultralow Wear with Stable Nanocrystalline Metals , 2018, Advanced materials.

[21]  K. Lu,et al.  Enhanced thermal stability of nanograined metals below a critical grain size , 2018, Science.

[22]  C. Schuh,et al.  Interplay between thermodynamic and kinetic stabilization mechanisms in nanocrystalline Fe-Mg alloys , 2018 .

[23]  A. Mehta,et al.  Evidence that abnormal grain growth precedes fatigue crack initiation in nanocrystalline Ni-Fe , 2018 .

[24]  H. Peng,et al.  Thermal stability of nanocrystalline materials: thermodynamics and kinetics , 2017 .

[25]  S. Raghavan,et al.  Effect of in situ stress on grain growth and texture evolution in sputtered YSZ/Si films , 2017 .

[26]  E. Chason,et al.  Origins of residual stress in thin films: Interaction between microstructure and growth kinetics , 2016 .

[27]  E. .. Mittemeijer,et al.  Stability of nanosized alloy thin films: Faulting and phase separation in metastable Ni/Cu/Ag-W films , 2016 .

[28]  S. Yoon,et al.  Thermal stability of Cu/W nano-multilayers , 2016 .

[29]  K. Lu Stabilizing nanostructures in metals using grain and twin boundary architectures , 2016 .

[30]  Mark A. Atwater,et al.  Mitigating grain growth in binary nanocrystalline alloys through solute selection based on thermodynamic stability maps , 2014 .

[31]  C. Schuh,et al.  Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design , 2013 .

[32]  C. Schuh,et al.  Stability of binary nanocrystalline alloys against grain growth and phase separation , 2013 .

[33]  David L. Olmsted,et al.  Structural phase transformations in metallic grain boundaries , 2012, Nature Communications.

[34]  C. Schuh,et al.  Design of Stable Nanocrystalline Alloys , 2012, Science.

[35]  Y. Mishin,et al.  Thermodynamics of coherent interfaces under mechanical stresses. II. Application to atomistic simulation of grain boundaries , 2012 .

[36]  E. Holm,et al.  Comparing grain boundary energies in face-centered cubic metals: Al, Au, Cu and Ni , 2010 .

[37]  E. .. Mittemeijer,et al.  Large excess volume in grain boundaries of stressed, nanocrystalline metallic thin films: Its effect on grain-growth kinetics , 2009 .

[38]  C. Thompson,et al.  Direct evidence for effects of grain structure on reversible compressive deposition stresses in polycrystalline gold films. , 2009, Physical review letters.

[39]  C. Schuh,et al.  Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys , 2009 .

[40]  Zumin Wang,et al.  Origins of stress development during metal-induced crystallization and layer exchange: Annealing amorphous Ge/crystalline Al bilayers , 2008 .

[41]  Andreas Michels,et al.  Unraveling the nature of room temperature grain growth in nanocrystalline materials , 2008 .

[42]  R. Scattergood,et al.  Stabilization of nanocrystalline grain sizes by solute additions , 2008, Journal of Materials Science.

[43]  David L. McDowell,et al.  Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading , 2008 .

[44]  E. .. Mittemeijer,et al.  The “state of the art” of the diffraction analysis of crystallite size and lattice strain , 2008 .

[45]  C. Schuh,et al.  Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni–W system , 2007 .

[46]  S. Brandstetter,et al.  From Micro‐ to Macroplasticity , 2006 .

[47]  Arnold C. Vermeulen,et al.  Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction , 2005 .

[48]  A. Mukherjee,et al.  Spark plasma sintering (SPS) consolidated ceramic composites from plasma-sprayed metastable Al2TiO5 powder and nano-Al2O3, TiO2, and MgO powders , 2004 .

[49]  B. Schmitt,et al.  Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel , 2004, Science.

[50]  C. Thompson,et al.  Reversible stress changes at all stages of Volmer–Weber film growth , 2004 .

[51]  N. Saunders,et al.  Using JMatPro to model materials properties and behavior , 2003 .

[52]  R. Kirchheim Grain coarsening inhibited by solute segregation , 2002 .

[53]  C. Thompson Structure Evolution During Processing of Polycrystalline Films , 2000 .

[54]  C. E. Krill,et al.  Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials , 1999 .

[55]  Carl V. Thompson,et al.  Stress and grain growth in thin films , 1996 .

[56]  Y. Ivashchenko,et al.  Investigation of grain-boundary diffusion of nickel in molybdenum by auger electron spectroscopy , 1992 .

[57]  K. Lu,et al.  Grain growth kinetics and interfacial energies in nanocrystalline Ni‐P alloys , 1991 .

[58]  William D. Nix,et al.  Mechanical properties of thin films , 1989 .

[59]  H. E. Kissinger Reaction Kinetics in Differential Thermal Analysis , 1957 .

[60]  Arvind R. Kalidindi,et al.  The role of W on the thermal stability of nanocrystalline NiTiWx thin films , 2018 .

[61]  T. C. Huang,et al.  Residual stress/strain analysis in thin films by X-ray diffraction , 1995 .

[62]  William D. Nix,et al.  Stresses and deformation processes in thin films on substrates , 1988 .

[63]  P. Chaudhari,et al.  Grain Growth and Stress Relief in Thin Films , 1972 .

[64]  G. K. Williamson,et al.  X-ray line broadening from filed aluminium and wolfram , 1953 .