Isogeometric analysis of nonlinear Euler–Bernoulli beam vibrations
暂无分享,去创建一个
[1] I. Babuska,et al. Finite Element Analysis , 2021 .
[2] S. H. A. Chen,et al. Application of the incremental harmonic balance method to cubic non-linearity systems , 1990 .
[3] G. Farin. Curves and Surfaces for Cagd: A Practical Guide , 2001 .
[4] G. Gladwell,et al. Solid mechanics and its applications , 1990 .
[5] Qinghua Zheng,et al. Parallel harmonic balance , 1993, VLSI.
[6] S. H. A. Chen,et al. Nonlinear Vibration of Plane Structures by Finite Element and Incremental Harmonic Balance Method , 2001 .
[7] Peter A. Ivey,et al. VLSI 93, Proceedings of the IFIP TC10/WG 10.5 International Conference on Very Large Scale Integration, Grenoble, France, 7-10 September, 1993 , 1994, VLSI.
[8] Anh-Vu Vuong,et al. ISOGAT: A 2D tutorial MATLAB code for Isogeometric Analysis , 2010, Comput. Aided Geom. Des..
[9] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[10] Giancarlo Sangalli,et al. Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.
[11] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[12] J. A. Stricklin,et al. Displacement incrementation in non-linear structural analysis by the self-correcting method , 1977 .
[13] Yu. A. Kuznetsov,et al. Applied nonlinear dynamics: Analytical, computational, and experimental methods , 1996 .
[14] Wanda Szemplińska-Stupnicka,et al. The Behavior of Nonlinear Vibrating Systems , 1990 .
[15] Maurice Petyt,et al. NON-LINEAR VIBRATION OF BEAMS WITH INTERNAL RESONANCE BY THE HIERARCHICAL FINITE-ELEMENT METHOD , 1999 .
[16] S. K. Korovin,et al. Approximation Procedures in Nonlinear Oscillation Theory , 1994 .
[17] W. Schnell,et al. Technische Mechanik. Bd. 4: Hydromechanik, Elemente der höheren Mechanik, numerische Methoden. 2. Aufl , 1995 .
[18] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[19] Wing Kam Liu,et al. Nonlinear Finite Elements for Continua and Structures , 2000 .
[20] D. Inman. Nonlinearity in Structural Dynamics: Detection, Identification and Modelling , 2002 .
[21] Pedro Ribeiro,et al. HIERARCHICAL FINITE ELEMENT ANALYSES OF GEOMETRICALLY NON-LINEAR VIBRATION OF BEAMS AND PLANE FRAMES , 2001 .
[22] D. F. Rogers,et al. An Introduction to NURBS: With Historical Perspective , 2011 .
[23] A. Ferri. On the Equivalence of the Incremental Harmonic Balance Method and the Harmonic Balance-Newton Raphson Method , 1986 .
[24] R. Duvigneau,et al. On the role played by NURBS weights in isogeometric structural shape optimization , 2010 .
[25] Jerry H. Ginsberg,et al. Mechanical and Structural Vibrations: Theory and Applications , 2001 .
[26] David J. Wagg,et al. Nonlinear Vibration with Control for Flexible and Adaptive Structures Series: Solid Mechanics and Its Applications, Vol. 170 , 2010 .
[27] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[28] Pedro Ribeiro,et al. Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods , 2004 .
[29] Keith Worden,et al. Nonlinearity in Structural Dynamics , 2019 .
[30] L. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communications.
[31] E. Allgower,et al. Introduction to Numerical Continuation Methods , 1987 .
[32] Malcolm A. Sabin,et al. Mathematics of Surfaces XII, 12th IMA International Conference, Sheffield, UK, September 4-6, 2007, Proceedings , 2007, IMA Conference on the Mathematics of Surfaces.
[33] T. Hughes,et al. Efficient quadrature for NURBS-based isogeometric analysis , 2010 .
[34] Martin Aigner,et al. Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.
[35] Roman Lewandowski,et al. Non-linear, steady-state vibration of structures by harmonic balance/finite element method , 1992 .
[36] J. Oden. Finite Elements of Nonlinear Continua , 1971 .
[37] R. Lewandowski. Computational formulation for periodic vibration of geometrically nonlinear structures—part 2: Numerical strategy and examples , 1997 .
[38] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[39] Richard Courant,et al. Wiley Classics Library , 2011 .
[40] T. Hughes,et al. Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .
[41] E. Allgower,et al. Numerical Continuation Methods , 1990 .
[42] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .