Isogeometric analysis of nonlinear Euler–Bernoulli beam vibrations

In this paper we analyze the vibrations of nonlinear structures by means of the novel approach of isogeometric finite elements. The fundamental idea of isogeometric finite elements is to apply the same functions, namely B-Splines and NURBS (Non-Uniform Rational B-Splines), for describing the geometry and for representing the numerical solution. In case of linear vibrational analysis, this approach has already been shown to possess substantial advantages over classical finite elements, and we extend it here to a nonlinear framework based on the harmonic balance principle. As application, the straight nonlinear Euler–Bernoulli beam is used, and overall, it is demonstrated that isogeometric finite elements with B-Splines in combination with the harmonic balance method are a powerful means for the analysis of nonlinear structural vibrations. In particular, the smoother k-method provides higher accuracy than the p-method for isogeometric nonlinear vibration analysis.

[1]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[2]  S. H. A. Chen,et al.  Application of the incremental harmonic balance method to cubic non-linearity systems , 1990 .

[3]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[4]  G. Gladwell,et al.  Solid mechanics and its applications , 1990 .

[5]  Qinghua Zheng,et al.  Parallel harmonic balance , 1993, VLSI.

[6]  S. H. A. Chen,et al.  Nonlinear Vibration of Plane Structures by Finite Element and Incremental Harmonic Balance Method , 2001 .

[7]  Peter A. Ivey,et al.  VLSI 93, Proceedings of the IFIP TC10/WG 10.5 International Conference on Very Large Scale Integration, Grenoble, France, 7-10 September, 1993 , 1994, VLSI.

[8]  Anh-Vu Vuong,et al.  ISOGAT: A 2D tutorial MATLAB code for Isogeometric Analysis , 2010, Comput. Aided Geom. Des..

[9]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[10]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[11]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[12]  J. A. Stricklin,et al.  Displacement incrementation in non-linear structural analysis by the self-correcting method , 1977 .

[13]  Yu. A. Kuznetsov,et al.  Applied nonlinear dynamics: Analytical, computational, and experimental methods , 1996 .

[14]  Wanda Szemplińska-Stupnicka,et al.  The Behavior of Nonlinear Vibrating Systems , 1990 .

[15]  Maurice Petyt,et al.  NON-LINEAR VIBRATION OF BEAMS WITH INTERNAL RESONANCE BY THE HIERARCHICAL FINITE-ELEMENT METHOD , 1999 .

[16]  S. K. Korovin,et al.  Approximation Procedures in Nonlinear Oscillation Theory , 1994 .

[17]  W. Schnell,et al.  Technische Mechanik. Bd. 4: Hydromechanik, Elemente der höheren Mechanik, numerische Methoden. 2. Aufl , 1995 .

[18]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[19]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[20]  D. Inman Nonlinearity in Structural Dynamics: Detection, Identification and Modelling , 2002 .

[21]  Pedro Ribeiro,et al.  HIERARCHICAL FINITE ELEMENT ANALYSES OF GEOMETRICALLY NON-LINEAR VIBRATION OF BEAMS AND PLANE FRAMES , 2001 .

[22]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[23]  A. Ferri On the Equivalence of the Incremental Harmonic Balance Method and the Harmonic Balance-Newton Raphson Method , 1986 .

[24]  R. Duvigneau,et al.  On the role played by NURBS weights in isogeometric structural shape optimization , 2010 .

[25]  Jerry H. Ginsberg,et al.  Mechanical and Structural Vibrations: Theory and Applications , 2001 .

[26]  David J. Wagg,et al.  Nonlinear Vibration with Control for Flexible and Adaptive Structures Series: Solid Mechanics and Its Applications, Vol. 170 , 2010 .

[27]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[28]  Pedro Ribeiro,et al.  Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods , 2004 .

[29]  Keith Worden,et al.  Nonlinearity in Structural Dynamics , 2019 .

[30]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[31]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[32]  Malcolm A. Sabin,et al.  Mathematics of Surfaces XII, 12th IMA International Conference, Sheffield, UK, September 4-6, 2007, Proceedings , 2007, IMA Conference on the Mathematics of Surfaces.

[33]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[34]  Martin Aigner,et al.  Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.

[35]  Roman Lewandowski,et al.  Non-linear, steady-state vibration of structures by harmonic balance/finite element method , 1992 .

[36]  J. Oden Finite Elements of Nonlinear Continua , 1971 .

[37]  R. Lewandowski Computational formulation for periodic vibration of geometrically nonlinear structures—part 2: Numerical strategy and examples , 1997 .

[38]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[39]  Richard Courant,et al.  Wiley Classics Library , 2011 .

[40]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[41]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[42]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .