A Novel Energy Harvester for Powering Small UAVs: Performance Analysis, Model Validation and Flight Results

The proposed work aims at exploring and developing new strategies to extend mission parameters (measured as travel distance and mission duration (MD)) of a new class of unmanned vehicles, named Micro Air Vehicles (MAVs). In this paper, a new analytical model, identifying all factors, which determine the MAV power consumption, is presented. Starting from the new model, the design of a nanoarray energy harvester, based on plasmonics nano-antenna technology is proposed. The preliminary study was based on a 22,066,058 22,066,058 × 62,800-dipole rectenna array producing an output power level of 84.14 mW, and an energy value of 2572 J under a power density of 100 mW/cm² and a resonant frequency of 350 THz as input conditions. The preliminary analytical results show a possible recharge of an ultra-fast rechargeable battery on board of a MAV and an MD improvement of 16.30 min.

[1]  Antonio Filippone,et al.  Flight Performance of Fixed- and Rotary-Wing Aircraft , 2006 .

[2]  Fan Zhang,et al.  A Novel Aluminum–Graphite Dual‐Ion Battery , 2016 .

[3]  A. Di Carlo,et al.  The next generation: miniaturized objects, self powered using nanostructures to harvest ambient energy , 2016 .

[4]  M. Raschke,et al.  Optical Nanoantenna Input Impedance , 2016 .

[5]  George J. Vachtsevanos,et al.  Handbook of Unmanned Aerial Vehicles , 2014 .

[6]  Samad Sheikhaei,et al.  A novel plasmonic nanoantenna structure for solar energy harvesting , 2016, 2016 Fourth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT).

[7]  Claire J. Tomlin,et al.  Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment , 2007 .

[8]  Alessandro Massaro,et al.  New Trends in Energy Harvesting from Earth Long-Wave Infrared Emission , 2014 .

[9]  Parvathy Rajendran,et al.  Perpetual Solar-Powered Flight across Regions around the World for a Year-Long Operation , 2017 .

[10]  Prasanna Kumar Sahu,et al.  A Novel Approach towards the Designing of an Antenna for Aircraft Collision Avoidance System , 2017 .

[11]  M. M. Abd-Elrazzak,et al.  Optimized tapered dipole nanoantenna as efficient energy harvester. , 2016, Optics express.

[12]  L. Archer,et al.  The rechargeable aluminum-ion battery. , 2011, Chemical communications.

[13]  Abumoslem Jannesari,et al.  Self-start-up fully integrated DC-DC step-up converter using body biasing technique for energy harvesting applications , 2018, AEU - International Journal of Electronics and Communications.

[14]  Mao Huanyu,et al.  Comments on “An ultrafast rechargeable aluminum ion battery” , 2015 .

[15]  Francesco Prudenzano,et al.  Innovative Materials and Systems for Energy Harvesting Applications , 2015 .

[16]  Guy A. E. Vandenbosch,et al.  Optimal solar energy harvesting efficiency of nano-rectenna systems , 2013 .

[17]  N. Rizoug,et al.  Optimization of Energy Consumption for Quadrotor UAV , 2017 .

[18]  Roland Siegwart,et al.  A solar-powered hand-launchable UAV for low-altitude multi-day continuous flight , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[20]  D. K. Kotter,et al.  Theory and Manufacturing Processes of Solar NanoAntenna Electromagnetic Collectors , 2010 .

[21]  Sachit Grover,et al.  Metal Single-Insulator and Multi-Insulator Diodes for Rectenna Solar Cells , 2013 .

[22]  Higinio González-Jorge,et al.  Unmanned Aerial Systems for Civil Applications: A Review , 2017 .

[23]  Lance W. Traub,et al.  Range and Endurance Estimates for Battery-Powered Aircraft , 2011 .

[24]  Nasser Masoumi,et al.  High efficiency boost converter with variable output voltage using a self-reference comparator , 2014 .

[25]  Garret Moddel,et al.  Rectenna solar cells , 2013 .

[26]  Deren Yang,et al.  Fabrication of Ni-NiO-Cu Metal-Insulator-Metal Tunnel Diodes via Anodic Aluminum Oxide Templates , 2012 .

[27]  Johan Meyer,et al.  Critical design parameters for a low altitude long endurance solar powered UAV , 2009, AFRICON 2009.

[28]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[29]  F Di Paolo,et al.  Nano Energy Harvesting with Plasmonic Nano-Antennas: A review of MID-IR Rectenna and Application , 2017 .

[30]  Roland Siegwart,et al.  Perpetual flight with a small solar-powered UAV: Flight results, performance analysis and model validation , 2016, 2016 IEEE Aerospace Conference.

[31]  K. Komurasaki,et al.  Power Transmission to a Micro Aerial Vehicle , 2007 .

[32]  Khaled M. Elbassioni,et al.  Autonomous Recharging and Flight Mission Planning for Battery-Operated Autonomous Drones , 2017, IEEE Transactions on Automation Science and Engineering.

[33]  Jaehwan Kim,et al.  Microwave power transmission using a flexible rectenna for microwave-powered aerial vehicles , 2006 .

[34]  Alireza Hassanzadeh,et al.  An ultra-low power, low voltage DC-DC converter circuit for energy harvesting applications , 2019, AEU - International Journal of Electronics and Communications.

[35]  Luca Petricca,et al.  Micro- and Nano-Air Vehicles: State of the Art , 2011 .

[36]  Zhongkun Ma,et al.  Input impedance of optical metallic nano dipole over 300 nm – 1200 nm wavelength , 2013, 2013 7th European Conference on Antennas and Propagation (EuCAP).

[37]  Umberto Papa,et al.  Preliminary Design of an Unmanned Aircraft System for Aircraft General Visual Inspection , 2018, Electronics.

[38]  P. Livreri,et al.  Optimal matching between optical rectennas and harvester circuits , 2017, 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe).

[39]  Guy A. E. Vandenbosch,et al.  Optimizing the bowtie nano-rectenna topology for solar energy harvesting applications , 2017 .

[40]  Patrizia Livreri,et al.  Solar Nanoantennas energy based characterization , 2016 .

[41]  A. Di Carlo,et al.  Replacing noble metals with alternative metals in MID-IR frequency: A theoretical approach , 2018 .

[42]  G. Vandenbosch,et al.  Upper bounds for the solar energy harvesting efficiency of nano-antennas , 2012 .

[43]  Mehdi Bagheri,et al.  Wireless Charging Techniques for UAVs: A Review, Reconceptualization, and Extension , 2018, IEEE Access.