Generation of the VESPA response to rapid contrast fluctuations is dominated by striate cortex: Evidence from retinotopic mapping

The VESPA (visual-evoked spread spectrum analysis) method derives an impulse response function of the visual system from scalp electroencephalographic (EEG) data using the controlled modulation of some feature of a visual stimulus. Recent research using VESPA responses to modulations of stimulus contrast has provided new insights into both early visual attention mechanisms and the specificity of visual-processing deficits in schizophrenia. To allow a fuller interpretation of these and future findings, it is necessary to further characterize the VESPA in terms of its underlying cortical generators. To that end, we here examine spatio-temporal variations in the components of the VESPA as a function of stimulus location. We found that the first two VESPA components (C1/P1) each have a posterior dorsal midline focus and reverse in polarity across the horizontal meridian, consistent with retinotopic projections to calcarine cortex (V1) for the stimulus locations tested. Furthermore, the focal scalp topography of the VESPA was strikingly constant across the entire C1-P1 timeframe (50-120 ms) for each stimulus location, with negligible global scalp activity visible at the zero-crossing dividing the two. This indicates a common focal source underpinning both components, which was further supported by a significant correlation between C1 and P1 amplitudes across subjects (r=0.54; p<0.05). These results, along with factors implicit in the method of derivation of the contrast-VESPA, lead us to conclude that these responses are dominated by activity from striate cortex. We discuss the implications of this finding for previous and future research using the VESPA.

[1]  C. Schroeder,et al.  Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. , 2000, Cerebral cortex.

[2]  Ryusuke Kakigi,et al.  Effects of check size on pattern reversal visual evoked magnetic field and potential , 2000, Brain Research.

[3]  Justin M. Ales,et al.  V1 is not uniquely identified by polarity reversals of responses to upper and lower visual field stimuli , 2010, NeuroImage.

[4]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  D. Jeffreys,et al.  Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin , 2004, Experimental Brain Research.

[6]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[7]  Donald C Hood,et al.  Conventional pattern-reversal VEPs are not equivalent to summed multifocal VEPs. , 2003, Investigative ophthalmology & visual science.

[8]  A. Dale,et al.  Functional analysis of primary visual cortex (V1) in humans. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  S. Hillyard,et al.  Identification of early visual evoked potential generators by retinotopic and topographic analyses , 1994 .

[10]  Barak A. Pearlmutter,et al.  Dissecting the cellular contributions to early visual sensory processing deficits in schizophrenia using the VESPA evoked response , 2008, Schizophrenia Research.

[11]  Thom Carney,et al.  Using multi-stimulus VEP source localization to obtain a retinotopic map of human primary visual cortex , 1999, Clinical Neurophysiology.

[12]  S. Hillyard,et al.  Involvement of striate and extrastriate visual cortical areas in spatial attention , 1999, Nature Neuroscience.

[13]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[14]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[15]  G. V. Simpson,et al.  Flow of activation from V1 to frontal cortex in humans , 2001, Experimental Brain Research.

[16]  D. Lehmann,et al.  Reference-free identification of components of checkerboard-evoked multichannel potential fields. , 1980, Electroencephalography and clinical neurophysiology.

[17]  Barak A. Pearlmutter,et al.  Isolating endogenous visuo-spatial attentional effects using the novel visual-evoked spread spectrum analysis (VESPA) technique , 2007, The European journal of neuroscience.

[18]  Xian Zhang,et al.  A principal component analysis of multifocal pattern reversal VEP. , 2004, Journal of vision.

[19]  John J. Foxe,et al.  Spatial attention modulates initial afferent activity in human primary visual cortex. , 2008, Cerebral cortex.

[20]  A. James The pattern-pulse multifocal visual evoked potential. , 2003, Investigative ophthalmology & visual science.

[21]  J BELBEY,et al.  What is schizophrenia? , 1982, Schizophrenia bulletin.

[22]  J. Bullier,et al.  Cross-correlation study of the temporal interactions between areas V1 and V2 of the macaque monkey. , 1999, Journal of neurophysiology.

[23]  Gastone G. Celesia,et al.  Visual evoked potentials and electroretinograms , 2012 .

[24]  K Mizoi,et al.  Striate cortical generators of the N75, P100 and N145 components localized by pattern reversal visual evoked magnetic fields. , 1997, The Tohoku journal of experimental medicine.

[25]  N Nakasato,et al.  Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure. , 1996, Electroencephalography and clinical neurophysiology.

[26]  S. Luck,et al.  Sources of attention-sensitive visual event-related potentials , 2005, Brain Topography.

[27]  C. Schroeder,et al.  A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. , 1998, Cerebral cortex.

[28]  S. Hillyard,et al.  Delayed Striate Cortical Activation during Spatial Attention , 2002, Neuron.

[29]  Anna W Roe,et al.  Optical imaging of contrast response in Macaque monkey V1 and V2. , 2007, Cerebral cortex.

[30]  Ted Maddess,et al.  Hierarchical decomposition of dichoptic multifocal visual evoked potentials , 2006, Visual Neuroscience.

[31]  Steven A. Hillyard,et al.  Involvement of striate and extrastriate visual cortical areas in spatial-selective attention: combined evidence from fMRI and event-related potentials. , 1999 .

[32]  Barak A. Pearlmutter,et al.  The VESPA: A method for the rapid estimation of a visual evoked potential , 2006, NeuroImage.

[33]  Stanley A. Klein,et al.  The folding fingerprint of visual cortex reveals the timing of human V1 and V2 , 2007 .

[34]  John J. Foxe,et al.  Parvocellular and Magnocellular Contributions to the Initial Generators of the Visual Evoked Potential: High-Density Electrical Mapping of the “C1” Component , 2008, Brain Topography.

[35]  Stanley A. Klein,et al.  The folding fingerprint of visual cortex reveals the timing of human V1 and V2 , 2010, NeuroImage.

[36]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[37]  D. Heeger,et al.  Neuronal basis of contrast discrimination , 1999, Vision Research.

[38]  W. Andrew The vertebrate visual system , 1957 .

[39]  Charles E. Schroeder,et al.  What does polarity inversion of extrastriate activity tell us about striate contributions to the early VEP? A comment on Ales et al. (2010) , 2013, NeuroImage.

[40]  A. Ioannides,et al.  Attention Modulates Earliest Responses in the Primary Auditory and Visual Cortices , 2008, Neuron.

[41]  Steven A. Hillyard,et al.  Identification of the neural sources of the pattern-reversal VEP , 2005, NeuroImage.

[42]  S. Klein,et al.  The topography of visual evoked response properties across the visual field. , 1994, Electroencephalography and clinical neurophysiology.

[43]  G. V. Simpson,et al.  Integration of electrophysiological source analyses, MRI and animal models in the study of visual processing and attention. , 1995, Electroencephalography and clinical neurophysiology. Supplement.

[44]  E. Halgren,et al.  Source estimates for MEG/EEG visual evoked responses constrained by multiple, retinotopically‐mapped stimulus locations , 2009, Human brain mapping.

[45]  S. Butler,et al.  Cortical generators of the CI component of the pattern-onset visual evoked potential. , 1987, Electroencephalography and clinical neurophysiology.

[46]  G. Pourtois,et al.  Attentional load modifies early activity in human primary visual cortex , 2009, Human brain mapping.

[47]  John J. Foxe,et al.  Abnormal timing of visual feedback processing in young adults with schizophrenia , 2009, Neuropsychologia.

[48]  Paul G. Roofe,et al.  The Vertebrate Visual System , 1958, Neurology.

[49]  S L Graham,et al.  Objective perimetry using the multifocal visual evoked potential in central visual pathway lesions , 2005, British Journal of Ophthalmology.

[50]  F. Previc Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications , 1990, Behavioral and Brain Sciences.

[51]  S. Hillyard,et al.  Cortical sources of the early components of the visual evoked potential , 2002, Human brain mapping.

[52]  John J. Foxe,et al.  Early Spatial Attentional Modulation of Inputs to the Fovea , 2010, The Journal of Neuroscience.

[53]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[54]  J. B. Levitt,et al.  Functional properties of neurons in macaque area V3. , 1997, Journal of neurophysiology.

[55]  J. B. Levitt,et al.  Receptive fields and functional architecture of macaque V2. , 1994, Journal of neurophysiology.

[56]  S. Hillyard,et al.  Spatial Selective Attention Affects Early Extrastriate But Not Striate Components of the Visual Evoked Potential , 1996, Journal of Cognitive Neuroscience.

[57]  John J. Foxe,et al.  Isolating early cortical generators of visual-evoked activity: a systems identification approach , 2012, Experimental Brain Research.