Optimality of Multilevel Preconditioners for Local Mesh Refinement in Three Dimensions

In this article, we establish optimality of the Bramble--Pasciak--Xu (BPX) norm equivalence and optimality of the wavelet modified (or stabilized) hierarchical basis (WHB) preconditioner in the setting of local 3D mesh refinement. In the analysis of WHB methods, a critical first step is to establish the optimality of BPX norm equivalence for the refinement procedures under consideration. While the available optimality results for the BPX norm have been constructed primarily in the setting of uniformly refined meshes, a notable exception is the local 2D red-green result due to Dahmen and Kunoth. The purpose of this article is to extend this original 2D optimality result to the local 3D red-green refinement procedure introduced by Bornemann, Erdmann, and Kornhuber, and then to use this result to extend the WHB optimality results from the quasi-uniform setting to local 2D and 3D red-green refinement scenarios. The BPX extension is reduced to establishing that locally enriched finite element subspaces allow for the construction of a scaled basis which is formally Riesz stable. This construction turns out to rest not only on the shape regularity of the refined elements, but also critically on a number of geometrical properties we establish between neighboring simplices produced by the Bornemann--Erdmann--Kornhuber (BEK) refinement procedure. It is possible to show that the number of degrees of freedom used for smoothing is bounded by a constant times the number of degrees of freedom introduced at that level of refinement, indicating that a practical, implementable version of the resulting BPX preconditioner for the BEK refinement setting has provably optimal (linear) computational complexity per iteration. An interesting implication of the optimality of the WHB preconditioner is the a priori H1-stability of the L2-projection. The existing a posteriori approaches in the literature dictate a reconstruction of the mesh if such conditions cannot be satisfied. The theoretical framework employed supports arbitrary spatial dimension $d \geq 1$ and requires no coefficient smoothness assumptions beyond those required for well-posedness in H1.

[1]  Sergey Korotov,et al.  The Strengthened Cauchy-Bunyakowski-Schwarz Inequality for n-Simplicial Linear Finite Elements , 2004, NAA.

[2]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[3]  Panayot S. Vassilevski,et al.  Stabilizing the Hierarchical Basis by Approximate Wavelets, I: Theory , 1997 .

[4]  Michael J. Holst,et al.  An Odyssey into Local Refinement and Multilevel Preconditioning III: Implementation and Numerical Experiments , 2003, SIAM J. Sci. Comput..

[5]  R. DeVore,et al.  Interpolation of Besov-Spaces , 1988 .

[6]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[7]  Harry Yserentant,et al.  A basic norm equivalence for the theory of multilevel methods , 1993 .

[8]  Michael J. Holst,et al.  Adaptive Numerical Treatment of Elliptic Systems on Manifolds , 2001, Adv. Comput. Math..

[9]  Peter Oswald,et al.  Multilevel Finite Element Approximation , 1994 .

[10]  E. G. Sewell,et al.  Automatic generation of triangulations for piecewise polynomial approximation , 1972 .

[11]  H. Yserentant On the multi-level splitting of finite element spaces , 1986 .

[12]  J. Bey,et al.  Tetrahedral grid refinement , 1995, Computing.

[13]  Rob P. Stevenson Robustness of the additive and multiplicative frequency decomposition multi-level method , 2005, Computing.

[14]  Randolph E. Bank,et al.  Hierarchical bases and the finite element method , 1996, Acta Numerica.

[15]  Joseph E. Pasciak,et al.  THE ANALYSIS OF SMOOTHERS FOR MULTIGRID ALGORITHMS , 1992 .

[16]  Panayot S. Vassilevski,et al.  Stabilizing the Hierarchical Basis by Approximate Wavelets, I: Theory , 1997, Numer. Linear Algebra Appl..

[17]  Panayot S. Vassilevski,et al.  Wavelet-Like Methods in the Design of Efficient Multilevel Preconditioners for Elliptic PDEs , 1997 .

[18]  R. Skeel,et al.  Unified Multilevel Adaptive Finite Element Methods for Elliptic Problems , 1988 .

[19]  Barry Joe,et al.  Quality Local Refinement of Tetrahedral Meshes Based on Bisection , 1995, SIAM J. Sci. Comput..

[20]  Joseph E. Pasciak,et al.  New estimates for multilevel algorithms including the V-cycle , 1993 .

[21]  Randolph E. Bank,et al.  Analysis Of A Two-Level Scheme For Solving Finite Element Equations , 1980 .

[22]  Andrei Khodakovsky,et al.  Multilevel Solvers for Unstructured Surface Meshes , 2005, SIAM J. Sci. Comput..

[23]  Carsten Carstensen,et al.  Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..

[24]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[25]  É. A. Storozhenko,et al.  Jackson's theorem in the spaces Lp(Rk), 0 , 1978 .

[26]  M. E. Go Ong Hierachical basis preconditioners for second order elliptic problems in three dimensions , 1989 .

[27]  Rob Stevenson,et al.  A robust hierarchical basis preconditioner on general meshes , 1997 .

[28]  Wolfgang Dahmen,et al.  Multiscale Wavelet Methods for Partial Differential Equations , 1997 .

[29]  S. Jaffard Wavelet methods for fast resolution of elliptic problems , 1992 .

[30]  MICHAEL HOLST IMPLEMENTATION AND THEORETICAL ASPECTS OF THE BPX PRECONDITIONER IN THE THREE DIMENSIONAL LOCAL MESH REFINEMENT SETTING , 2004 .

[31]  Burak Aksoylu,et al.  AN ODYSSEY INTO LOCAL REFINEMENT AND MULTILEVEL PRECONDITIONING I: OPTIMALITY OF THE BPX PRECONDITIONER , 2005 .

[32]  Burak Aksoylu,et al.  AN ODYSSEY INTO LOCAL REFINEMENT AND MULTILEVEL PRECONDITIONING II: STABILIZING HIERARCHICAL BASIS METHODS , 2005 .

[33]  Joseph E. Pasciak,et al.  On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..

[34]  R. Bank,et al.  The hierarchical basis multigrid method , 1988 .

[35]  F. Bornemann,et al.  Adaptive multivlevel methods in three space dimensions , 1993 .

[36]  Panayot S. Vassilevski,et al.  Stabilizing the Hierarchical Basis by Approximate Wavelets II: Implementation and Numerical Results , 1998, SIAM J. Sci. Comput..

[37]  Peter Oswald,et al.  On Function Spaces Related to Finite Element Approximation Theory , 1990 .