Supply of proton enhances CO electrosynthesis for acetate and volatile fatty acid productions.

[1]  J. R. Kim,et al.  Small current but large production of 1,3-propanediol from glycerol by an electrode-driven metabolic shift in Klebsiella pneumoniae L17. , 2019, ChemSusChem.

[2]  A. W. Hassel,et al.  Enhanced Bio‐Electrochemical Reduction of Carbon Dioxide by Using Neutral Red as a Redox Mediator , 2019, Chembiochem : a European journal of chemical biology.

[3]  Bruce E Logan,et al.  Electroactive microorganisms in bioelectrochemical systems , 2019, Nature Reviews Microbiology.

[4]  J. R. Kim,et al.  Isolation of Novel CO Converting Microorganism Using Zero Valent Iron for a Bioelectrochemical System (BES) , 2019, Biotechnology and Bioprocess Engineering.

[5]  S. Puig,et al.  Bio-electrorecycling of carbon dioxide into bioplastics , 2018 .

[6]  J. R. Kim,et al.  Co-culture-based biological carbon monoxide conversion by Citrobacter amalonaticus Y19 and Sporomusa ovata via a reducing-equivalent transfer mediator. , 2018, Bioresource technology.

[7]  C. Dinamarca,et al.  Electrochemically mediated CO2 reduction for bio-methane production: a review , 2018, Reviews in Environmental Science and Bio/Technology.

[8]  S. Puig,et al.  Microbial Community Pathways for the Production of Volatile Fatty Acids From CO2 and Electricity , 2018, Front. Energy Res..

[9]  J. R. Kim,et al.  Recent developments and key barriers to advanced biofuels: A short review. , 2018, Bioresource technology.

[10]  J. R. Kim,et al.  Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator. , 2018, Chemosphere.

[11]  Falk Harnisch,et al.  Predicting and experimental evaluating bio-electrochemical synthesis - A case study with Clostridium kluyveri. , 2017, Bioelectrochemistry.

[12]  The semiquinone swing in the bifurcating electron transferring flavoprotein/butyryl-CoA dehydrogenase complex from Clostridium difficile , 2017, Nature Communications.

[13]  I. Michie,et al.  Anodic electro-fermentation of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae L17 in a bioelectrochemical system , 2017, Biotechnology for Biofuels.

[14]  Rohan B. H. Williams,et al.  Electrochemical and genomic analysis of novel electroactive isolates obtained via potentiostatic enrichment from tropical sediment , 2017 .

[15]  K. Rabaey,et al.  Continuous long-term electricity-driven bioproduction of carboxylates and isopropanol from CO2 with a mixed microbial community , 2017 .

[16]  C. Buisman,et al.  Continuous Long‐Term Bioelectrochemical Chain Elongation to Butyrate , 2017 .

[17]  J. R. Kim,et al.  Biologically activated graphite fiber electrode for autotrophic acetate production from CO2in a bioelectrochemical system , 2016 .

[18]  A. Stams,et al.  Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas , 2016, Biotechnology for Biofuels.

[19]  P. Dürre,et al.  C1-carbon sources for chemical and fuel production by microbial gas fermentation. , 2015, Current opinion in biotechnology.

[20]  Lisa H. Orfe,et al.  The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction. , 2015, Bioresource technology.

[21]  Kun Guo,et al.  Selective Enrichment Establishes a Stable Performing Community for Microbial Electrosynthesis of Acetate from CO₂. , 2015, Environmental science & technology.

[22]  Caitlyn S. Butler,et al.  Simplifying microbial electrosynthesis reactor design , 2015, Front. Microbiol..

[23]  Yoshinobu Tanaka,et al.  Bipolar Membrane Electrodialysis , 2015 .

[24]  Bipro Ranjan Dhar,et al.  Membranes for bioelectrochemical systems: challenges and research advances , 2013, Environmental technology.

[25]  Hajime Kobayashi,et al.  Bio-electrochemical conversion of carbon dioxide to methane in geological storage reservoirs , 2013 .

[26]  Tian Zhang,et al.  Improved cathode materials for microbial electrosynthesis , 2013 .

[27]  Partha Sarathi Guin,et al.  Electrochemical Reduction of Quinones in Different Media: A Review , 2011 .

[28]  K. Rabaey,et al.  Microbial electrosynthesis — revisiting the electrical route for microbial production , 2010, Nature Reviews Microbiology.

[29]  P. Munasinghe,et al.  Biomass-derived syngas fermentation into biofuels: Opportunities and challenges. , 2010, Bioresource technology.

[30]  Derek R. Lovley,et al.  Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds , 2010, mBio.

[31]  Mauro Majone,et al.  Bioelectrochemical reduction of CO(2) to CH(4) via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. , 2010, Bioresource technology.

[32]  Hubertus V. M. Hamelers,et al.  New applications and performance of bioelectrochemical systems , 2010, Applied Microbiology and Biotechnology.

[33]  Mari S. Chinn,et al.  Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas , 2009 .

[34]  H. Drake,et al.  Old Acetogens, New Light , 2008, Annals of the New York Academy of Sciences.

[35]  Bruce E Logan,et al.  Sustainable and efficient biohydrogen production via electrohydrogenesis , 2007, Proceedings of the National Academy of Sciences.

[36]  Sang-Eun Oh,et al.  Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. , 2007, Environmental science & technology.

[37]  A. Stams,et al.  Microbial CO Conversions with Applications in Synthesis Gas Purification and Bio-Desulfurization , 2006, Critical reviews in biotechnology.

[38]  J. R. Kim,et al.  Oxygen Sensitivity of Carbon Monoxide-Dependent Hydrogen Production Activity in Citrobacter sp. , 2003 .

[39]  E. C. Clausen,et al.  Biological production of ethanol from coal synthesis gas , 1993 .