A review of physics and correlations of pool fire behaviour in wind and future challenges

This paper reviews the physics and correlations for the burning behaviour of pool fires in wind, discussing also challenges for future research on this topic. In the past decades, the burning behaviour of pool fires in still air, which is solely buoyancy driven, has been extensively studied. These studies are primarily focused on scale, radiation, soot, pressure and gravity effects. However, these phenomena and physics change significantly with much more complexity in the presence of wind, with regard to heat feedback and burning rate; flame morphological characteristics; flame turbulence, soot and radiation emission. Remarkable progress has been made in understanding the behaviour of the heat feedback and burning rate, flame tilt, flame length and flame base drag of wind-blown pool fires. Several semi-empirical correlations have been proposed for these quantities, based on experimental data and the physically dimensional analysis. However, for wind-blown pool fires, the flame soot and radiation emission coupling with complex flow turbulence scales due to the interaction of buoyancy with wind still require more basic research. All these processes are more challenging especially for wind-blown large scale pool fires, which require knowledge and understanding of the physics, especially for establishing evaluation methodologies of their hazard and adverse impact.

[1]  Jian Wang,et al.  Combustion characteristics of n-heptane at high altitudes , 2011 .

[2]  Jay P. Gore,et al.  Temperature and soot volume fraction statistics in toluene-fired pool fires , 1993 .

[3]  C. Shaddix,et al.  Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames , 1996 .

[4]  H. Ding,et al.  An experimental study on burning rate and flame tilt of optical-thin heptane pool fires in cross flows , 2017 .

[5]  Takashi Kashiwagi,et al.  Estimate of flame radiance via a single location measurement in liquid pool fires , 1991 .

[6]  P. H. Thomas,et al.  THE SIZE OF FLAMES FROM NATURAL FIRES , 1962 .

[7]  Cecilia S. Lam,et al.  Wind-blown pool fire, Part I: Experimental characterization of the thermal field , 2015 .

[8]  Phani K. Raj,et al.  Thermal emission and other characteristics of large liquefied natural gas fires , 2007 .

[9]  Gerard M. Faeth,et al.  Soot Volume Fractions in the Overfire Region of Turbulent Diffusion Flames , 1990 .

[10]  R. C. Corlett,et al.  Some aspects of structures of turbulent pool fires , 1979 .

[11]  J. Ris,et al.  Flame necking-in and instability characterization in small and medium pool fires with different lip heights , 2015 .

[12]  Vytenis Babrauskas,et al.  Estimating large pool fire burning rates , 1983 .

[13]  J. Swithenbank,et al.  Fire hazards in oil tank arrays in a wind , 1979 .

[14]  W. Gill,et al.  Transient Measurements of Radiative Properties, Soot Volume Fraction and Soot Temperature in a Large Pool Fire∗ , 1998 .

[15]  O. A. Pipkin,et al.  Effect of Wind on Buoyant Diffusion Flames. Initial Correlation , 1964 .

[16]  Merv Fingas,et al.  Formation of water-in-oil emulsions and application to oil spill modelling. , 2004, Journal of hazardous materials.

[17]  Jay P. Gore,et al.  Heat Feedback to the Fuel Surface in Pool Fires , 1994 .

[18]  Colin H. Miller,et al.  Local flame attachment and heat fluxes in wind-driven line fires , 2017 .

[19]  Jay P. Gore,et al.  Simultaneous emission absorption measurements in toluene-fueled pool flames: Mean and RMS Properties☆ , 1992 .

[20]  Osami Sugawa,et al.  Experimental Study On Gasoline Station Fire - Evaluation Of Fire Safety , 1989 .

[21]  T. Brzustowski,et al.  A study of the burning of a slick of crude oil on water , 1982 .

[22]  J. M. Chatris,et al.  Experimental study of burning rate in hydrocarbon pool fires , 2001 .

[23]  J. Ris,et al.  Froude modeling of pool fires , 1982 .

[24]  Heat transfer in pool fires at a certain small lip height , 2002 .

[25]  Jay P. Gore,et al.  Transient structure and radiation properties of strongly radiating buoyant flames , 1992 .

[26]  Brian A. Fleck,et al.  Effects of transverse air flow on burning rates of rectangular methanol pool fires , 2006 .

[27]  Henry Persson,et al.  Thermal exposure from large scale ethanol fuel pool fires , 2015 .

[28]  Shouxiang Lu,et al.  Pool Fire Mass Burning Rate and Flame Tilt Angle under Crosswind in Open Space , 2016 .

[29]  M. Delichatsios,et al.  A Phenomenological Model for Smoke-Point and Soot Formation in Laminar Flames , 1994 .

[30]  R. J. Gill,et al.  Estimation of Soot Thresholds for Fuel Mixtures , 1984 .

[31]  T. Steinhaus,et al.  Large-scale pool fires , 2007 .

[32]  G. H. Markstein Measurements on Gaseous-Fuel Pool Fires with a Fiber-optic Absorption Probe , 1984 .

[33]  G. M. Faeth,et al.  Spectral extinction coefficients of soot aggregates from turbulent diffusion flames , 1996 .

[34]  A. Rangwala,et al.  Effects of convective motion in n -octane pool fires in an ice cavity , 2015 .

[35]  E. Gengembre,et al.  Turbulent Diffusion Flames with Large Buoyancy Effects , 1984 .

[36]  L. Kostiuk,et al.  Quantifying the Conduction Pathways in a Laboratory-Scale Methanol Pool Fire , 2015 .

[37]  G. Heskestad,et al.  Radiation fire modeling , 2000 .

[38]  D. Drysdale An Introduction to Fire Dynamics , 2011 .

[39]  V. Blinov,et al.  DIFFUSION BURNING OF LIQUIDS , 1961 .

[40]  Francesco Tamanini,et al.  Reaction rates, air entrainment and radiation in turbulent fire plumes , 1977 .

[41]  G. Mulholland,et al.  The effect of diameter on the burning of crude oil pool fires , 1991 .

[42]  Takashi Kashiwagi,et al.  Characteristics of Pool Fire Burning , 1996 .

[43]  Pierre Joulain,et al.  The behavior of pool fires: State of the art and new insights , 1998 .

[44]  L. J. Li,et al.  Experimental study and global correlation on burning rates and flame tilt characteristics of acetone pool fires under cross air flow , 2015 .

[45]  Baki M. Cetegen,et al.  Experiments on the instability modes of buoyant diffusion flames and effects of ambient atmosphere on the instabilities , 2000 .

[46]  Toshisuke Hirano,et al.  Tomakomai Large Scale Crude Oil Fire Experiments , 2000 .

[47]  Xiaolei Zhang,et al.  Burning rate and flame tilt characteristics of radiation-controlled rectangular hydrocarbon pool fires with cross air flows in a reduced pressure , 2015 .

[48]  A. Schönbucher,et al.  Simultaneous observation of organized density structures and the visible field in pool fires , 1988 .

[49]  Takaaki Yamaguchi,et al.  Oil Pool Fire Experiment , 1986 .

[50]  Marcos Chaos,et al.  Pool fires – An empirical correlation , 2013 .

[51]  Y. Hasemi,et al.  Fuel Shape Effect On The Deterministic Properites Of Turbulent Diffusion Flames , 1989 .

[52]  J. R. Welker,et al.  Bending of wind-blown flames from liquid pools , 1966 .

[53]  Shuai Liu,et al.  Flame radiation feedback to fuel surface in medium ethanol and heptane pool fires with cross air flow , 2013 .

[54]  Pierre Joulain,et al.  Convective and radiative transport in pool and wall fires: 20 years of research in Poitiers , 1996 .

[55]  Gunnar Heskestad,et al.  Luminous heights of turbulent diffusion flames , 1983 .

[56]  Jun Zhang,et al.  Effects of low air pressure on radiation-controlled rectangular ethanol and n-heptane pool fires , 2013 .

[57]  J. P. Vantelon,et al.  Characterisation of thermal radiation from freely burning oil pool fires , 1989 .

[58]  Shuai Liu,et al.  Evolution of heat feedback in medium pool fires with cross air flow and scaling of mass burning flux by a stagnant layer theory solution , 2015 .

[59]  Ümit Özgür Köylü,et al.  Structure of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times , 1992 .

[60]  H. Kung,et al.  Buoyant plumes of large-scale pool fires , 1982 .

[61]  T. Kubota,et al.  Visible structure of buoyant diffusion flames , 1985 .

[62]  Phani K. Raj,et al.  A Physical Model and Improved Experimental Data Correlation for Wind Induced Flame Drag in Pool Fires , 2010 .

[63]  Kevin B. McGrattan,et al.  In Situ Burning of Oil Spills , 2001, Journal of research of the National Institute of Standards and Technology.

[64]  M. Fairweather,et al.  Predictions of radiative transfer from a turbulent reacting jet in a cross-wind , 1992 .

[65]  Herrera Gómez,et al.  Experiments for the Measurement of LNG Mass Burning Rates , 2012 .

[66]  Timothy J. Miller,et al.  The Phoenix series large scale LNG pool fire experiments. , 2010 .

[67]  L. Kostiuk,et al.  Characterization of flow field within the liquid phase of a small pool fire using particle image velocimetry technique , 2016 .

[68]  Alexander L. Brown,et al.  The Effects of Wind on Liquid Fuelled Pool Fires , 2003 .

[69]  Richard K.K. Yuen,et al.  Investigation of enclosure effect of pressure chamber on the burning behavior of a hydrocarbon fuel , 2016 .

[70]  Dedy Ng,et al.  Key Findings of Liquefied Natural Gas Pool Fire Outdoor Tests with Expansion Foam Application , 2011 .

[71]  Yaping He,et al.  Effects of oblique air flow on burning rates of square ethanol pool fires. , 2013, Journal of hazardous materials.

[72]  J. Moorhouse Scaling criteria for pool fires derived from large scale experiments. , 1982 .

[73]  Jie Chen,et al.  INFLUENCE OF GRAVITY AND PRESSURE ON POOL FIRE-TYPE DIFFUSION FLAMES , 1996 .

[74]  Shuai Liu,et al.  Flame length elongation behavior of medium hydrocarbon pool fires in cross air flow , 2013 .

[75]  Jose L. Torero,et al.  Determination of the Burning Characteristics of a Slick of Oil on Water , 2003 .

[76]  G. H. Markstein Relationship between smoke point and radiant emission from buoyant turbulent and laminar diffusion flames , 1985 .

[77]  Ashok T. Modak,et al.  Thermal radiation from pool fires , 1977 .

[78]  G. Faeth,et al.  Generalized state relationships for scalar properties in nonpremixed hydrocarbon/air flames , 1990 .

[79]  Gerard M. Faeth,et al.  Temperature / soot volume fraction correlations in the fuel-rich region of buoyant turbulent diffusion flames☆ , 1990 .

[80]  P. H. Thomas,et al.  ON THE SIZE AND ORIENTATION OF BUOYANT DIFFUSION FLAMES AND THE EFFECT OF WIND , 1963 .

[81]  Cecilia S. Lam,et al.  Wind-blown pool fire, Part II: Comparison of measured flame geometry with semi-empirical correlations , 2015 .

[82]  Y. Oka,et al.  Effect Of Cross-Winds To Apparent Flame Height And Tilt Angle From Several Kinds Of Fire Source , 2002 .

[83]  R. Yuen,et al.  Experimental analysis of low air pressure influences on fire plumes , 2014 .

[84]  Longhua Hu,et al.  A wind tunnel experimental study on burning rate enhancement behavior of gasoline pool fires by cross air flow , 2011 .

[85]  J. R. Welker,et al.  The effect of wind on flames , 1965 .

[86]  L. Kostiuk,et al.  Transport phenomena within the liquid phase of a laboratory-scale circular methanol pool fire , 2014 .

[87]  George W. Mulholland,et al.  The effect of pool diameter on the properties of smoke produced by crude oil fires , 1996 .

[88]  Howard R. Baum,et al.  Measurements and prediction of air entrainment rates of pool fires , 1996 .

[89]  Xiaolei Zhang,et al.  Flame base drag of pool fires with different side wall height in cross flows: A laboratory-scale experimental study and a new correlation , 2016 .

[90]  Toshisuke Hirano,et al.  Behavior of luminous zones appearing on plumes of large-scale pool fires of kerosene , 1999 .

[91]  E. J. Weckman,et al.  The oscillatory behaviour of medium-scale pool fires , 1989 .

[92]  Nicola Lane Crauford The structure of an unconfined buoyant turbulent diffusion flame , 1984 .

[93]  L. Kostiuk,et al.  Fluid motion and energy transfer within burning liquid fuel pools of various thicknesses , 2015 .

[94]  Hiroomi Satoh,et al.  Modelling of unconfined flame tilt in cross-winds , 2000 .

[95]  M Sam Mannan,et al.  Field experiments on high expansion (HEX) foam application for controlling LNG pool fire. , 2009, Journal of hazardous materials.

[96]  A. Fernandez-Pello,et al.  Boilover burning of oil spilled on water , 1994 .

[97]  H. Torikai,et al.  Flame characteristics of small-scale pool fires under low gravity environments , 2013 .

[98]  Xiaolei Zhang,et al.  Pool fire flame base drag behavior with cross flow in a sub-atmospheric pressure , 2017 .

[99]  Elizabeth J. Weckman,et al.  Experimental investigation of the turbulence structure of medium-scale methanol pool fires , 1996 .

[100]  Hiroshi Koseki,et al.  Combustion properties of large liquid pool fires , 1989 .

[101]  J. G. Quintiere,et al.  A unified analysis for fire plumes , 1998 .

[102]  Takashi Kashiwagi,et al.  An experimental investigation of the pulsation frequency of flames , 1992 .

[103]  Michael A. Delichatsios,et al.  Air entrainment into buoyant jet flames and pool fires , 1987 .

[104]  H. Rushmeier,et al.  Simultaneous optical measurement of soot volume fraction, temperature, and CO2 in heptane pool fire , 1994 .

[105]  Gerard M. Faeth,et al.  Refractive Indices at Visible Wavelengths of Soot Emitted From Buoyant Turbulent Diffusion Flames , 1997 .

[106]  Risto Lautkaski,et al.  Validation of flame drag correlations with data from large pool fires , 1992 .

[107]  J. R. Welker,et al.  Burning rates and heat transfer from wind-blown flames , 1966 .

[108]  Naoshi Saito Experimental Study on Fire Behavior in a Wind Tunnel with a Reduced Scale Model , 1995 .

[109]  D spanDELKA,et al.  The montoir 35m diameter LNG pool fire experiments. , 1989 .

[110]  A. Rangwala,et al.  A study on burning of crude oil in ice cavities , 2015 .

[111]  Josep Arnaldos,et al.  Effects of thin-layer boilover on flame geometry and dynamics in large hydrocarbon pool fires , 2007 .

[112]  J. A. Koski,et al.  Actively cooled calorimeter measurements and environment characterization in a large pool fire , 1996 .

[113]  P. H. Thomas,et al.  FIRE SPREAD IN WOODEN CRIBS: PART III THE EFFECT OF WIND , 1965 .

[114]  V. B. Apte,et al.  Pool Fire Plume Flow In A Large-scale Wind Tunnel , 1991 .

[115]  A. Rangwala,et al.  Experimental study of burning behavior of large-scale crude oil fires in ice cavities , 2016 .

[116]  K. S. Mudan Thermal radiation hazards from hydrocarbon pool fires , 1984 .

[117]  A. P. Shevchuk,et al.  A New Simplified Pdf Method For Calculating Major Species Concentrations And Burning In Turbulent Fires , 1989 .

[118]  Thomas K. Blanchat,et al.  Experimental study of the flow field in and around a one meter diameter methane fire , 2002 .

[119]  Jennifer Spinti,et al.  Large eddy simulations of accidental fires using massively parallel computers , 2003 .

[120]  William L. Grosshandler,et al.  The structure and radiation of an ethanol pool fire , 1987 .

[121]  Kevin B. McGrattan,et al.  In Situ Burning of Oil Spills: Mesoscale Experiments and Analysis (NIST SP 995) | NIST , 1993 .

[122]  Takashi Kashiwagi,et al.  Radiative heat feedback in a toluene pool fire , 1992 .

[123]  B. Mccaffrey Purely buoyant diffusion flames :: some experimental results , 1979 .

[124]  Eulàlia Planas,et al.  Analysis of the geometric and radiative characteristics of hydrocarbon pool-fires , 2004 .

[125]  Paul Jowitt,et al.  A BAYESIAN ESTIMATION OF THE EFFECT OF FORCED VENTILATION ON A POOL FIRE IN A TUNNEL , 2001 .

[126]  J. M. Most,et al.  Characterization Of The Puffing Phenomenon On A Pool Fire , 2000 .

[127]  Tim T. Fu Aviation Fuel Fire Behavior Study , 1972 .

[128]  J. L. De Ris,et al.  The Of Role Of Smoke-point In Material Flammability Testing , 1994 .

[129]  Shuai Liu,et al.  A new mathematical quantification of wind-blown flame tilt angle of hydrocarbon pool fires with a new global correlation model , 2013 .

[130]  Atsushi Nakakuki,et al.  Liquid fuel fires in the laminar flame region , 1974 .

[131]  X. Ni,et al.  Flame characteristics and burning rate of small pool fires under downslope and upslope oblique winds , 2016 .

[132]  J. Torero,et al.  CROSS FLOW EFFECTS ON THE FLAME HEIGHT OF AN INTERMEDIATE SCALE DIFFUSION FLAME , 1997 .

[133]  T. Yumoto,et al.  Heat transfer in small pools and rates of burning of liquid methanol , 1965 .

[134]  H. Baum,et al.  Thermal radiation from large pool fires , 2000 .

[135]  Henry C Barnett,et al.  Adaptation of Combustion Principles to Aircraft Propulsion, Volume I, Basic Considerations in the Combustion of Hydrocarbon Fuels with Air , 1955 .

[136]  E. Planas,et al.  Predicting the emissive power of hydrocarbon pool fires. , 2007, Journal of hazardous materials.

[137]  David E. Foster,et al.  Total Soot Yield from a Propane Diffusion Flame in Cross-Flow , 1990 .

[138]  Yaping He,et al.  Combustion characteristics of n-heptane and wood crib fires at different altitudes , 2009 .

[139]  Atsushi Nakakuki,et al.  Heat transfer in hot-zone-forming pool fires , 1997 .

[140]  F. Tang,et al.  Flame pulsation frequency of conduction-controlled rectangular hydrocarbon pool fires of different aspect ratios in a sub-atmospheric pressure , 2014 .

[141]  H. Koseki,et al.  Large Scale Pool Fires : Results Of Recent Experiments , 2001 .

[142]  Koseki Hiroshi,et al.  Air entrainment and thermal radiation from heptane pool fires , 1988 .

[143]  Eulàlia Planas,et al.  Experimental study of burning rate in hydrocarbon pool fires , 2001 .