A Multilevel Monte Carlo Method for Computing Failure Probabilities

In this thesis we consider two great challenges in computer simulations of partial differential equations: multiscale data, varying over multiple scales in space and time, and data uncertainty, due to lack of or inexact measurements.We develop a multiscale method based on a coarse scale correction, using localized fine scale computations. We prove that the error in the solution produced by the multiscale method decays independently of the fine scale variation in the data or the computational domain. We consider the following aspects of multiscale methods: continuous and discontinuous underlying numerical methods, adaptivity, convection-diffusion problems, Petrov-Galerkin formulation, and complex geometries.For uncertainty quantification problems we consider the estimation of p-quantiles and failure probability. We use spatial a posteriori error estimates to develop and improve variance reduction techniques for Monte Carlo methods. We improve standard Monte Carlo methods for computing p-quantiles and multilevel Monte Carlo methods for computing failure probability.

[1]  Elisabeth Ullmann,et al.  Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.

[2]  Fabio Nobile,et al.  Optimization of mesh hierarchies in multilevel Monte Carlo samplers , 2014, Stochastics and Partial Differential Equations Analysis and Computations.

[3]  Anders Logg Automated solution of differential equations , 2007 .

[4]  Simon Tavener,et al.  Nonparametric Density Estimation for Randomly Perturbed Elliptic Problems I: Computational Methods, A Posteriori Analysis, and Adaptive Error Control , 2009, SIAM J. Sci. Comput..

[5]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[6]  P. Glynn IMPORTANCE SAMPLING FOR MONTE CARLO ESTIMATION OF QUANTILES , 2011 .

[7]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[8]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[9]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[10]  J. Beck,et al.  Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation , 2001 .

[11]  T. Zajic,et al.  Splitting for rare event simulation: analysis of simple cases , 1996, Proceedings Winter Simulation Conference.

[12]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[13]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[14]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[15]  R. Tempone,et al.  A continuation multilevel Monte Carlo algorithm , 2014, BIT Numerical Mathematics.

[16]  Daniel Elfverson,et al.  Uncertainty Quantification for Approximate p-Quantiles for Physical Models with Stochastic Inputs , 2014, SIAM/ASA J. Uncertain. Quantification.

[17]  A. Kebaier,et al.  Statistical Romberg extrapolation: A new variance reduction method and applications to option pricing , 2005, math/0602529.

[18]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[19]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[20]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[21]  Rainer Avikainen On irregular functionals of SDEs and the Euler scheme , 2009, Finance Stochastics.