A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants

This paper presents a nW power management unit (PMU) for an autonomous wireless sensor that sustains itself by harvesting energy from the endocochlear potential (EP), the 70-100 mV electrochemical bio-potential inside the mammalian ear. Due to the anatomical constraints inside the inner ear, the total extractable power from the EP is limited close to 1.1-6.25 nW. A nW boost converter is used to increase the input voltage (30-55 mV) to a higher voltage (0.8-1.1 V) usable by CMOS circuits in the sensor. A pW charge pump circuit is used to minimize the leakage in the boost converter. Furthermore, ultralow-power control circuits consisting of digital implementations of input impedance adjustment circuits and zero current switching circuits along with Timer and Reference circuits keep the quiescent power of the PMU down to 544 pW. The designed boost converter achieves a peak power conversion efficiency of 56%. The PMU can sustain itself, and a duty-cyled ultralow-power load while extracting power from the EP of a live guinea pig. The PMU circuits have been implemented on a 0.18- μm CMOS process.

[1]  Anantha Chandrakasan,et al.  Platform architecture for solar, thermal and vibration energy combining with MPPT and single inductor , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[2]  V. S. Mallela,et al.  Trends in Cardiac Pacemaker Batteries , 2004, Indian pacing and electrophysiology journal.

[3]  Saibal Mukhopadhyay,et al.  Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits , 2003, Proc. IEEE.

[4]  Anantha P. Chandrakasan,et al.  Enabling Sub-nW RF circuits through subthreshold leakage management , 2013, 2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S).

[5]  R. Sarpeshkar,et al.  A Glucose Fuel Cell for Implantable Brain–Machine Interfaces , 2012, PloS one.

[6]  Richard T. Witek,et al.  A 160 MHz 32 b 0.5 W CMOS RISC microprocessor , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[7]  Kai Strunz,et al.  A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting , 2010, IEEE Journal of Solid-State Circuits.

[8]  Diana Hodgins,et al.  Healthy Aims: Developing New Medical Implants and Diagnostic Equipment , 2008, IEEE Pervasive Computing.

[9]  A. Chandrakasan,et al.  Energy extraction from the biologic battery in the inner ear , 2012, Nature Biotechnology.

[10]  Behzad Razavi,et al.  Design of Analog CMOS Integrated Circuits , 1999 .

[11]  G. Cho,et al.  A 40 mV Transformer-Reuse Self-Startup Boost Converter With MPPT Control for Thermoelectric Energy Harvesting , 2012, IEEE Journal of Solid-State Circuits.

[12]  David Blaauw,et al.  A 150pW program-and-hold timer for ultra-low-power sensor platforms , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[13]  Georg v. Békésy,et al.  D-C resting potentials inside the cochlear partition , 1952 .

[14]  Anantha P. Chandrakasan,et al.  A 78 pW 1 b/s 2.4 GHz radio transmitter for near-zero-power sensing applications , 2013, 2013 Proceedings of the ESSCIRC (ESSCIRC).

[15]  Koichi Ishida,et al.  Startup Techniques for 95 mV Step-Up Converter by Capacitor Pass-On Scheme and ${\rm V}_{\rm TH}$-Tuned Oscillator With Fixed Charge Programming , 2012, IEEE Journal of Solid-State Circuits.

[16]  C. Van Hoof,et al.  Micropower energy harvesting , 2009, ESSDERC 2009.

[17]  Scott K. Arfin,et al.  Fast startup CMOS current references , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[18]  Franziska Hoffmann,et al.  Design Of Analog Cmos Integrated Circuits , 2016 .

[19]  Anantha Chandrakasan,et al.  23.2 A 1.1nW energy harvesting system with 544pW quiescent power for next-generation implants , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[20]  S.R. Sanders,et al.  Analysis and Optimization of Switched-Capacitor DC–DC Converters , 2008, IEEE Transactions on Power Electronics.

[21]  Anantha Chandrakasan,et al.  A Battery-Less Thermoelectric Energy Harvesting Interface Circuit With 35 mV Startup Voltage , 2010, IEEE Journal of Solid-State Circuits.

[22]  Anantha Chandrakasan,et al.  A 330nA energy-harvesting charger with battery management for solar and thermoelectric energy harvesting , 2012, 2012 IEEE International Solid-State Circuits Conference.

[23]  R. D. Black,et al.  Recent Advances in Translational Work on Implantable Sensors , 2011, IEEE Sensors Journal.

[24]  Michel Declercq,et al.  A high-efficiency CMOS voltage doubler , 1998, IEEE J. Solid State Circuits.

[25]  David Blaauw,et al.  A cubic-millimeter energy-autonomous wireless intraocular pressure monitor , 2011, 2011 IEEE International Solid-State Circuits Conference.

[26]  Stephen H. Lewis,et al.  An energy-aware multiple-input power supply with charge recovery for energy harvesting applications , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[27]  Charles R. Sullivan,et al.  Synchronous rectification with adaptive timing control , 1995, Proceedings of PESC '95 - Power Electronics Specialist Conference.

[28]  Yoshihisa Kurachi,et al.  How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus , 2010, Pflügers Archiv - European Journal of Physiology.