Ch. 10. Fractals and the modelling of self-similarity

[1]  B. Hambly,et al.  Thick and thin points for random recursive fractals , 2003, Advances in Applied Probability.

[2]  J. Kigami,et al.  Analysis on Fractals , 2001 .

[3]  L. M. Morato,et al.  A stochastic algorithm to compute optimal probabilities in the chaos game , 2001, Advances in Applied Probability.

[4]  B. Hambly,et al.  Fluctuation of the transition density for Brownian motion on random recursive Sierpinski gaskets , 2001 .

[5]  J. Hutchinson,et al.  Random fractals and probability metrics , 2000, Advances in Applied Probability.

[6]  S. Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems: Finite reaction rates , 2000 .

[7]  A. Dembo,et al.  Thin points for Brownian motion , 2000 .

[8]  Karl Heinz Hoffmann,et al.  The similarity group and anomalous diffusion equations , 2000 .

[9]  W. Werner Critical Exponents, Conformal Invariance and Planar Brownian Motion , 2000, math/0007042.

[10]  B. Hambly On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets , 2000 .

[11]  Mark A. McComb A Practical Guide to Heavy Tails , 2000, Technometrics.

[12]  Gérard Ben Arous,et al.  Large deviations for Brownian motion on the Sierpinski gasket , 2000 .

[13]  Richard F. Bass,et al.  Brownian Motion and Harmonic Analysis on Sierpinski Carpets , 1999, Canadian Journal of Mathematics.

[14]  B. Hambly,et al.  Transition Density Estimates for Diffusion Processes on Post Critically Finite Self‐Similar Fractals , 1999 .

[15]  R. Adler,et al.  A practical guide to heavy tails: statistical techniques and applications , 1998 .

[16]  Vern Paxson,et al.  Fast, approximate synthesis of fractional Gaussian noise for generating self-similar network traffic , 1997, CCRV.

[17]  Keith A. Smith The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils , 1997 .

[18]  Stéphane Jaffard,et al.  Multifractal formalism for functions part I: results valid for all functions , 1997 .

[19]  Stéphane Jaffard,et al.  Multifractal formalism for functions part II: self-similar functions , 1997 .

[20]  D. Turcotte Fractals and Chaos in Geology and Geophysics , 1992 .

[21]  S. Taylor,et al.  The multifractal structure of stable occupation measure , 1997 .

[22]  S. Kusuoka,et al.  Homogenization on nested fractals , 1996 .

[23]  E. Perfect,et al.  Applications of fractals in soil and tillage research: a review , 1995 .

[24]  L. Olsen,et al.  A Multifractal Formalism , 1995 .

[25]  P. Mattila Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability , 1995 .

[26]  Jun Kigami Harmonic Calculus on Limits of Networks and Its Application to Dendrites , 1995 .

[27]  B. Hambly,et al.  Transition density estimates for Brownian motion on affine nested fractals , 1994 .

[28]  Peter Hall,et al.  On the Relationship Between Fractal Dimension and Fractal Index for Stationary Stochastic Processes , 1994 .

[29]  Jun Kigami,et al.  Weyl's problem for the spectral distribution of Laplacians on P.C.F. self-similar fractals , 1993 .

[30]  Jun Kigami,et al.  Harmonic calculus on p.c.f. self-similar sets , 1993 .

[31]  S. Kusuoka,et al.  Dirichlet forms on fractals: Poincaré constant and resistance , 1992 .

[32]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[33]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 1989, STOC '89.

[34]  R. Daniel Mauldin,et al.  Hausdorff dimension in graph directed constructions , 1988 .

[35]  S. Graf Statistically self-similar fractals , 1987 .

[36]  Harry Kesten,et al.  The incipient infinite cluster in two-dimensional percolation , 1986 .

[37]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[38]  J. Laurie Snell,et al.  Random Walks and Electrical Networks , 1984 .

[39]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[40]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[41]  U. Frisch FULLY DEVELOPED TURBULENCE AND INTERMITTENCY , 1980 .

[42]  K. A. Smith,et al.  A MODEL OF THE EXTENT OF ANAEROBIC ZONES IN AGGREGATED SOILS, AND ITS POTENTIAL APPLICATION TO ESTIMATES OF DENITRIFICATION1 , 1980 .

[43]  B. Mandelbrot Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .

[44]  A. Dembo,et al.  Thick points for spatial Brownian motion: multifractal analysis of occupation measure , 2000 .

[45]  J. L. Véhel,et al.  Generalized Multifractional Brownian Motion: Definition and Preliminary Results , 1999 .

[46]  Peter Hall,et al.  Fractal analysis of surface roughness by using spatial data , 1999 .

[47]  Jacques Lévy Véhel,et al.  Fractals: Theory and Applications in Engineering , 1999 .

[48]  Martin T. Barlow,et al.  Diffusions on fractals , 1998 .

[49]  C. Sabot Existence and uniqueness of diffusions on finitely ramified self-similar fractals , 1997 .

[50]  K. Falconer Techniques in fractal geometry , 1997 .

[51]  V. Metz Renormalization contracts on nested fractals. , 1996 .

[52]  Y. Fisher Fractal image compression: theory and application , 1995 .

[53]  M. Fukushima,et al.  Dirichlet forms and symmetric Markov processes , 1994 .

[54]  Hartmut Jürgens,et al.  Chaos and Fractals: New Frontiers of Science , 1992 .

[55]  Martin T. Barlow,et al.  Defining Fractal Subsets of Zd , 1992 .

[56]  T. Lindstrøm Brownian Motion On Nested Fractals , 1990 .

[57]  R. Daniel Mauldin,et al.  The exact Hausdorff dimension in random recursive constructions , 1988 .

[58]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[59]  Yves Meyer,et al.  Wavelets - tools for science and technology , 1987 .

[60]  R. Mauldin,et al.  Random recursive constructions: asymptotic geometric and topological properties , 1986 .

[61]  H. Kesten Subdiffusive behavior of random walk on a random cluster , 1986 .

[62]  S. James Taylor,et al.  Mathematical Proceedings of the Cambridge Philosophical Society The measure theory of random fractals , 2022 .