SOLIDIS: a tool for microactuator simulation in 3-D

SOLIDIS is an engineering software tool tailored for the coupled three-dimensional (3-D) analysis of microactuators. Surface electrostatic forces, thermomechanics, and piezoelectric effects are correctly treated. The solution algorithms implemented enable efficient and accurate static analysis and optimization of MEMS actuators. Adaptive mesh refinement results in near-optimal meshes in the sense of achieving maximum accuracy for a given number of mesh nodes. A zone partitioning scheme permits efficient simulation of complex actuator structures. Additional key issues are mesh updating using a Monte Carlo algorithm to account for the actuator's movement and the application of smoothing algorithms for the extraction of accurate electrostatic forces.

[1]  P. Malcovati,et al.  Optimization of a Novel Split Current Hall Device by Numeric Modeling , 1995, ESSDERC '95: Proceedings of the 25th European Solid State Device Research Conference.

[2]  H. Yie,et al.  Convergence properties of relaxation versus the surface-Newton generalized-conjugate residual algorithm for self-consistent electromechanical analysis of 3-D micro-electro-mechanical structures , 1994, Proceedings of International Workshop on Numerical Modeling of processes and Devices for Integrated Circuits: NUPAD V.

[3]  Oliver Paul,et al.  Scaling of thermal CMOS gas flow microsensors: experiment and simulation , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[4]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[5]  R. Callen,et al.  Thermodynamics and an Introduction to Thermostatistics, 2nd Edition , 1985 .

[6]  J. Brackbill,et al.  Adaptive zoning for singular problems in two dimensions , 1982 .

[7]  Jan G. Korvink,et al.  Thermomechanical modeling of an actuated micromirror , 1995 .

[8]  J. Funk,et al.  Coupled 3D thermo-electro-mechanical simulations of microactuators , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[9]  Pasqualina M. Sarro,et al.  Double Pass Metallization For Cmos Aluminum Actuators , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[10]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[11]  Oliver Paul,et al.  Thermally actuated CMOS micromirrors , 1995 .

[12]  E. Wilson,et al.  A non-conforming element for stress analysis , 1976 .

[13]  J. Funk,et al.  New convergence scheme for self-consistent electromechanical analysis of iMEMS , 1995, Proceedings of International Electron Devices Meeting.

[14]  H. Baltes,et al.  Process-dependent Thermophysical Properties Of CMOS IC Thin Films , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[15]  David Salt,et al.  Hy-Q handbook of quartz crystal devices , 1987 .

[16]  S. Senturia,et al.  3D coupled electro-mechanics for MEMS: applications of CoSolve-EM , 1995, Proceedings IEEE Micro Electro Mechanical Systems. 1995.

[17]  Bernd Folkmer,et al.  CAD tools for micromechanics , 1993 .

[18]  Robert Lewis Reuben,et al.  Coupled electrostatic and mechanical FEA of a micromotor , 1994 .

[19]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .

[20]  J. Z. Zhu,et al.  The finite element method , 1977 .

[21]  S. Crary,et al.  CAEMEMS: an integrated computer-aided engineering workbench for micro-electro-mechanical systems , 1990, IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots..

[22]  Hiroyuki Fujita,et al.  A piezoelectrically operated optical chopper by quartz micromachining , 1995 .