Rolling Pin Method: Efficient General Method of Joint Probability Modeling
暂无分享,去创建一个
[1] J. Horowitz. Semiparametric Methods in Econometrics , 2011 .
[2] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[3] T. Bedford,et al. Vines: A new graphical model for dependent random variables , 2002 .
[4] V. A. Epanechnikov. Non-Parametric Estimation of a Multivariate Probability Density , 1969 .
[5] Masoud Soroush,et al. Dynamic risk analysis using alarm databases to improve process safety and product quality: Part II—Bayesian analysis , 2012 .
[6] Masoud Soroush,et al. Maximum‐likelihood maximum‐entropy constrained probability density function estimation for prediction of rare events , 2014 .
[7] Gunky Kim,et al. Comparison of semiparametric and parametric methods for estimating copulas , 2007, Comput. Stat. Data Anal..
[8] Ingram Olkin,et al. A Semiparametric Approach to Density Estimation , 1987 .
[9] Aris Spanos,et al. Probability theory and statistical inference: econometric modelling with observational data , 1999 .
[10] Masoud Soroush,et al. Estimation of Complete Discrete Multivariate Probability Distributions from Scarce Data with Application to Risk Assessment and Fault Detection , 2014 .
[11] D. W. Scott. On optimal and data based histograms , 1979 .
[12] D. W. Scott,et al. Variable Kernel Density Estimation , 1992 .
[13] James Stephen Marron,et al. Comparison of data-driven bandwith selectors , 1988 .