RNA folding: beyond Watson-Crick pairs.

[1]  K. Hoogsteen,et al.  The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine , 1963 .

[2]  M. Sundaralingam,et al.  Stereochemistry of nucleic acids and their constituents. IV. Allowed and preferred conformations of nucleosides, nucleoside mono‐, di‐, tri‐, tetraphosphates, nucleic acids and polynucleotides , 1969 .

[3]  A. Rich,et al.  The crystal structures of purines, pyrimidines and their intermolecular complexes. , 1970, Progress in nucleic acid research and molecular biology.

[4]  N C Seeman,et al.  RNA double-helical fragments at atomic resolution. I. The crystal and molecular structure of sodium adenylyl-3',5'-uridine hexahydrate. , 1976, Journal of molecular biology.

[5]  N C Seeman,et al.  RNA double-helical fragments at atomic resolution. II. The crystal structure of sodium guanylyl-3',5'-cytidine nonahydrate. , 1976, Journal of molecular biology.

[6]  A. Rich,et al.  Structural domains of transfer RNA molecules. , 1976, Science.

[7]  S. Arnott,et al.  Models of triple-stranded polynucleotides with optimised stereochemistry. , 1976, Nucleic acids research.

[8]  M. Sundaralingam,et al.  Interrelationships between the pseudorotation parameters P and .tau.m and the geometry of the furanose ring , 1980 .

[9]  N. Leontis,et al.  Effect of magnesium ion on the structure of the 5S RNA from Escherichia coli. An imino proton magnetic resonance study of the helix I, IV, and V regions of the molecule. , 1986, Biochemistry.

[10]  E. Westhof,et al.  Higher order structure of chloroplastic 5S ribosomal RNA from spinach. , 1988, Biochemistry.

[11]  E. Westhof,et al.  Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. , 1990, Journal of molecular biology.

[12]  E Westhof,et al.  Monitoring of the cooperative unfolding of the sunY group I intron of bacteriophage T4. The active form of the sunY ribozyme is stabilized by multiple interactions with 3' terminal intron components. , 1993, Journal of molecular biology.

[13]  G. Varani,et al.  The conformation of loop E of eukaryotic 5S ribosomal RNA. , 1993, Biochemistry.

[14]  D. Turner,et al.  Thermal unfolding of a group I ribozyme: the low-temperature transition is primarily disruption of tertiary structure. , 1993, Biochemistry.

[15]  D Gautheret,et al.  A major family of motifs involving G.A mismatches in ribosomal RNA. , 1994, Journal of molecular biology.

[16]  K. Flaherty,et al.  Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix , 1994, Nature.

[17]  T. Jovin,et al.  Triad-DNA: a model for trinucleotide repeats , 1995, Nature Genetics.

[18]  A. Klug,et al.  The crystal structure of an AII-RNAhammerhead ribozyme: A proposed mechanism for RNA catalytic cleavage , 1995, Cell.

[19]  F. Michel,et al.  Frequent use of the same tertiary motif by self‐folding RNAs. , 1995, The EMBO journal.

[20]  C. Kundrot,et al.  RNA Tertiary Structure Mediation by Adenosine Platforms , 1996, Science.

[21]  C. Kundrot,et al.  Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing , 1996, Science.

[22]  T. Garestier,et al.  Oligonucleotide directed triple helix formation. , 1996, Current opinion in structural biology.

[23]  E. Westhof,et al.  Hydration of C-H groups in tRNA. , 1996, Faraday discussions.

[24]  T. Cech,et al.  Activity and thermostability of the small self-splicing group I intron in the pre-tRNA(lle) of the purple bacterium Azoarcus. , 1996, RNA.

[25]  J. Doudna,et al.  Metal-binding sites in the major groove of a large ribozyme domain. , 1996, Structure.

[26]  J. Doudna,et al.  A magnesium ion core at the heart of a ribozyme domain , 1997, Nature Structural Biology.

[27]  F. Michel,et al.  A group II self-splicing intron from the brown alga Pylaiella littoralis is active at unusually low magnesium concentrations and forms populations of molecules with a uniform conformation. , 1997, Journal of molecular biology.

[28]  P. Moore,et al.  The structure of an essential splicing element: stem loop IIa from yeast U2 snRNA. , 1997, Structure.

[29]  T. Steitz,et al.  Metals, Motifs, and Recognition in the Crystal Structure of a 5S rRNA Domain , 1997, Cell.

[30]  S. Neidle Oxford handbook of nucleic acid structure , 1998 .

[31]  A. Ferré-D’Amaré,et al.  Crystal structure of a hepatitis delta virus ribozyme , 1998, Nature.

[32]  E. Westhof,et al.  A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. , 1998, Journal of molecular biology.

[33]  C. W. Hilbers,et al.  New developments in structure determination of pseudoknots , 1998, Biopolymers.

[34]  T. Steitz,et al.  Crystal structure of the ribosomal RNA domain essential for binding elongation factors. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  T. Steitz,et al.  A 1.3-A resolution crystal structure of the HIV-1 trans-activation response region RNA stem reveals a metal ion-dependent bulge conformation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  E Westhof,et al.  The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure. , 1998, RNA.

[37]  J. Wedekind,et al.  Crystallographic structures of the hammerhead ribozyme: relationship to ribozyme folding and catalysis. , 1998, Annual review of biophysics and biomolecular structure.

[38]  E Westhof,et al.  Conserved geometrical base-pairing patterns in RNA , 1998, Quarterly Reviews of Biophysics.

[39]  D. Draper,et al.  On the role of magnesium ions in RNA stability , 1998, Biopolymers.

[40]  I. Tinoco,et al.  How RNA folds. , 1999, Journal of molecular biology.

[41]  A. Brunger,et al.  The 1.8 A crystal structure of a statically disordered 17 base-pair RNA duplex: principles of RNA crystal packing and its effect on nucleic acid structure. , 1999, Journal of molecular biology.

[42]  J. Wedekind,et al.  Crystal structure of a lead-dependent ribozyme revealing metal binding sites relevant to catalysis , 1999, Nature Structural Biology.

[43]  U. Heinemann,et al.  Crystal structure of acceptor stem of tRNA(Ala) from Escherichia coli shows unique G.U wobble base pair at 1.16 A resolution. , 1999, RNA.

[44]  S Cusack,et al.  The 2 A structure of helix 6 of the human signal recognition particle RNA. , 1999, Structure.

[45]  E. Westhof,et al.  Aminoglycoside-RNA interactions. , 1999, Current opinion in chemical biology.

[46]  D. Patel,et al.  Stitching together RNA tertiary architectures. , 1999, Journal of molecular biology.

[47]  E Westhof,et al.  Analysis of the cooperative thermal unfolding of the td intron of bacteriophage T4. , 1999, Nucleic acids research.

[48]  H. Noller,et al.  Identification of an RNA-protein bridge spanning the ribosomal subunit interface. , 1999, Science.

[49]  I. Wool,et al.  The two faces of the Escherichia coli 23 S rRNA sarcin/ricin domain: the structure at 1.11 A resolution. , 1999, Journal of molecular biology.

[50]  T. Earnest,et al.  X-ray crystal structures of 70S ribosome functional complexes. , 1999, Science.

[51]  C. Ehresmann,et al.  The Structure of Threonyl-tRNA Synthetase-tRNAThr Complex Enlightens Its Repressor Activity and Reveals an Essential Zinc Ion in the Active Site , 1999, Cell.

[52]  J. Berger,et al.  Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot , 1999, Nature Structural Biology.

[53]  Susan A. White,et al.  A novel loop-loop recognition motif in the yeast ribosomal protein L30 autoregulatory RNA complex , 1999, Nature Structural Biology.

[54]  E. Westhof,et al.  A sulfate pocket formed by three GoU pairs in the 0.97 A resolution X-ray structure of a nonameric RNA. , 1999, RNA.

[55]  C. Ehresmann,et al.  The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges. , 1999, Structure.

[56]  Ignacio Tinoco,et al.  Quantifying the energetic interplay of RNA tertiary and secondary structure interactions. , 1999, RNA.

[57]  J. McCutcheon,et al.  A Detailed View of a Ribosomal Active Site The Structure of the L11–RNA Complex , 1999, Cell.

[58]  E Westhof,et al.  Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes. , 1999, Journal of molecular biology.

[59]  E. Lattman,et al.  Crystal structure of a conserved ribosomal protein-RNA complex. , 1999, Science.

[60]  E Westhof,et al.  Non-Watson-Crick base pairs in RNA-protein recognition. , 1999, Chemistry & biology.

[61]  T. Steitz,et al.  Crystal structures of two plasmid copy control related RNA duplexes: An 18 base pair duplex at 1.20 A resolution and a 19 base pair duplex at 1.55 A resolution. , 1999, Biochemistry.

[62]  P. Moore,et al.  Structural motifs in RNA. , 1999, Annual review of biochemistry.

[63]  Batey,et al.  Tertiary Motifs in RNA Structure and Folding. , 1999, Angewandte Chemie.

[64]  D. Patel,et al.  Adaptive recognition by nucleic acid aptamers. , 2000, Science.

[65]  E Westhof,et al.  On the wobble GoU and related pairs. , 2000, RNA.