On approximating weakly/properly efficient solutions in multi-objective programming

Abstract This paper deals with approximate solutions of general (that is, without any convexity assumption) multi-objective optimization problems (MOPs). In this text, by reviewing some standard scalarization techniques we are interested in finding the relationships between e -(weakly, properly) efficient points of an MOP and ϵ -optimal solutions of the related scalarized problem. For this purpose, the relationships between ϵ ∈ R ≧ and e ∈ R ≧ m , for a single objective and multi-objective problems, respectively, are analyzed. In fact, necessary and/or sufficient conditions for approximating (weakly, properly) efficient points of a general MOP via approximate solutions of the scalarized problems are obtained.

[1]  Shouyang Wang,et al.  ε-approximate solutions in multiobjective optimization , 1998 .

[2]  Jen-Chwan Liu,et al.  ε-Optimality and duality for multiobjective fractional programming , 1999 .

[3]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[4]  H. P. Benson,et al.  An improved definition of proper efficiency for vector maximization with respect to cones , 1979 .

[5]  Kazunori Yokoyama,et al.  Epsilon Approximate Solutions for Multiobjective Programming Problems , 1996 .

[6]  Eugenia Panaitescu,et al.  Approximate quasi efficient solutions in multiobjective optimization , 2008 .

[7]  César Gutiérrez,et al.  A Unified Approach and Optimality Conditions for Approximate Solutions of Vector Optimization Problems , 2006, SIAM J. Optim..

[8]  Anurag Jayswal On sufficiency and duality in multiobjective programming problem under generalized α-type I univexity , 2010, J. Glob. Optim..

[9]  Xinmin Yang,et al.  Optimality Conditions for Approximate Solutions in Multiobjective Optimization Problems , 2010 .

[10]  J. Borwein Proper Efficient Points for Maximizations with Respect to Cones , 1977 .

[11]  M. I. Henig Proper efficiency with respect to cones , 1982 .

[12]  César Gutiérrez,et al.  Optimality Conditions for Metrically Consistent Approximate Solutions in Vector Optimization , 2007 .

[13]  Xinmin Yang,et al.  Some properties of approximate solutions for vector optimization problem with set-valued functions , 2010, J. Glob. Optim..

[14]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[15]  Margaret M. Wiecek,et al.  Generating epsilon-efficient solutions in multiobjective programming , 2007, Eur. J. Oper. Res..

[16]  Ignacy Kaliszewski Using trade-off information in decision-making algorithms , 2000, Comput. Oper. Res..

[17]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[18]  César Gutiérrez,et al.  Optimality conditions via scalarization for a new epsilon-efficiency concept in vector optimization problems , 2010, Eur. J. Oper. Res..

[19]  Matthias Ehrgott,et al.  Constructing robust crew schedules with bicriteria optimization , 2002 .

[20]  M. Ehrgott,et al.  Improved ε-Constraint Method for Multiobjective Programming , 2008 .

[21]  K. Teo,et al.  Optimality conditions for approximate solutions of vector optimization problems , 2011 .

[22]  A. Zaffaroni,et al.  On the notion of proper efficiency in vector optimization , 1994 .

[23]  Izhar Ahmad,et al.  Sufficiency and duality for nonsmooth multiobjective programming problems involving generalized (F, α, ρ, θ)-d-V-univex functions , 2011, Math. Comput. Model..

[24]  P. Loridan ε-solutions in vector minimization problems , 1984 .

[25]  César Gutiérrez,et al.  On Approximate Solutions in Vector Optimization Problems Via Scalarization , 2006, Comput. Optim. Appl..

[26]  Sien Deng On Approximate Solutions in Convex Vector Optimization , 1997 .

[27]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[28]  J. Dutta,et al.  ON APPROXIMATE MINIMA IN VECTOR OPTIMIZATION , 2001 .

[29]  Jen-Chwan Liu ϵ-properly efficient solutions to nondifferentiable multiobjective programming problems , 1999 .

[30]  D. J. White,et al.  Epsilon efficiency , 1986 .