Cost Decompositions and the Efficient Subset

This paper develops two cost decompositions based on the multiplicative Russell and additive slack-based (in)efficiency measurement frameworks. While the multiplicative cost decomposition is a straightforward extension of the standard cost decomposition, the decomposition we develop in this paper incorporates slacks directly so that efficiency is measured relative to the efficient subset. To show the applicability of our novel approach, we provide an illustration using a data set used in the literature.

[1]  William L. Weber,et al.  A directional slacks-based measure of technical inefficiency , 2009 .

[2]  Juan Aparicio,et al.  Decomposing profit inefficiency in DEA through the weighted additive model , 2011, Eur. J. Oper. Res..

[3]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[4]  Valentin Zelenyuk,et al.  Finding Common Ground: Efficiency Indices , 2007 .

[5]  R. R. Russell,et al.  Measures of technical efficiency , 1985 .

[6]  R. Banker,et al.  NONPARAMETRIC ANALYSIS OF TECHNICAL AND ALLOCATIVE EFFICIENCIES IN PRODUCTION , 1988 .

[7]  R. Shephard Cost and production functions , 1953 .

[8]  K. Zieschang An extended farrell technical efficiency measure , 1984 .

[9]  R. Färe,et al.  The measurement of efficiency of production , 1985 .

[10]  Rolf Färe,et al.  Efficiency and the production function , 1975 .

[11]  R. Färe,et al.  Profit, Directional Distance Functions, and Nerlovian Efficiency , 1998 .

[12]  Walter Briec,et al.  An Extended Fare-Lovell Technical Efficiency Measure , 2000 .

[13]  Rolf Färe,et al.  Measuring the technical efficiency of production , 1978 .

[14]  William L. Weber,et al.  A slacks-based inefficiency measure for a two-stage system with bad outputs , 2010 .

[15]  Victor V. Podinovski,et al.  Using data envelopment analysis for the assessment of technical efficiency of units with different specialisations: An application to agriculture ☆ , 2015 .

[16]  Mette Asmild,et al.  Slack free MEA and RDM with comprehensive efficiency measures , 2010 .

[17]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[18]  Kazuyuki Sekitani,et al.  Distance optimization approach to ratio-form efficiency measures in data envelopment analysis , 2014 .

[19]  John S. Liu,et al.  Data envelopment analysis 1978-2010: A citation-based literature survey , 2013 .

[20]  R. R. Russell,et al.  On the Axiomatic Approach to the Measurement of Technical Efficiency , 1988 .

[21]  Hirofumi Fukuyama,et al.  Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking , 2013 .

[22]  Gleb A. Koshevoy,et al.  On the existence of a technical efficiency criterion , 1991 .

[23]  Rolf Färe,et al.  Directional distance functions and slacks-based measures of efficiency , 2010, Eur. J. Oper. Res..

[24]  Joe Zhu,et al.  Data envelopment analysis: Prior to choosing a model , 2014 .

[25]  R. Färe,et al.  Benefit and Distance Functions , 1996 .

[26]  R. Färe,et al.  Nonparametric Cost Approach to Scale Efficiency , 1985 .

[27]  D. Luenberger Benefit functions and duality , 1992 .

[28]  V. Zelenyuk Scale efficiency and homotheticity: equivalence of primal and dual measures , 2014 .

[29]  Valentin Zelenyuk,et al.  Decomposing profit efficiency using a slack-based directional distance function , 2015, Eur. J. Oper. Res..

[30]  D. Primont,et al.  Multi-Output Production and Duality: Theory and Applications , 1994 .