Photovoltaic Response of InGaN/GaN Multiple-Quantum Well Solar Cells

We report on the fabrication and photovoltaic characterization of In0.12Ga0.88N/GaN multi-quantum-well (MQW) solar cells grown by metal–organic vapor phase epitaxy on (0001) sapphire substrates. Increasing the number of MQWs in the active region from 5 to 30 improves a factor of 10 the peak external quantum efficiency of the device at the price of a slight reduction and increase of the shunt and series resistance, respectively. Solar cells with 30 MQWs exhibit an external quantum efficiency of 38% at 380 nm, an open circuit voltage of 2.0 V, a short circuit current density of 0.23 mA/cm2 and a fill factor of 59% under 1 sun of AM1.5G-equivalent solar illumination. Solar cells with the grid spacing of the top p-contact varying from 100 to 200 µm present the same device performance in terms of spectral response and conversion efficiency.

[1]  Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration. , 2011, Optics express.

[3]  Jeong Yong Lee,et al.  Characterization of Pit Formation in III-Nitrides Grown by Metalorganic Chemical Mavor Deposition , 2002 .

[4]  J. Carlin,et al.  TEM and XANES study of MOVPE grown InAIN layers with different indium content , 2011 .

[5]  James S. Speck,et al.  High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm , 2011 .

[6]  S. Denbaars,et al.  Effect of quantum well cap layer thickness on the microstructure and performance of InGaN/GaN solar cells , 2012 .

[7]  James S. Speck,et al.  High internal and external quantum efficiency InGaN/GaN solar cells , 2011 .

[8]  Michael S. Shur,et al.  Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes , 1997 .

[9]  Motoaki Iwaya,et al.  GaInN-Based Solar Cells Using Strained-Layer GaInN/GaInN Superlattice Active Layer on a Freestanding GaN Substrate , 2011 .

[10]  Umesh K. Mishra,et al.  High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap , 2008 .

[11]  Akio Yamamoto,et al.  InGaN Solar Cells: Present State of the Art and Important Challenges , 2012, IEEE Journal of Photovoltaics.

[12]  Zetian Mi,et al.  High efficiency green, yellow, and amber emission from InGaN/GaN dot-in-a-wire heterostructures on Si"111… , 2010 .

[13]  Junqiao Wu,et al.  When group-III nitrides go infrared: New properties and perspectives , 2009 .

[14]  Vincenzo Fiorentini,et al.  MACROSCOPIC POLARIZATION AND BAND OFFSETS AT NITRIDE HETEROJUNCTIONS , 1998 .

[15]  R. Lin,et al.  Origins of efficient green light emission in phase-separated InGaN quantum wells , 2006 .

[16]  J. Eymery,et al.  InGaN/GaN multiple‐quantum well heterostructures for solar cells grown by MOVPE: case studies , 2013 .