On three-dimensional layout of de Bruijn networks

The de Bruijn networks are well-known as suitable structures for parallel computations such as FFT. This paper shows an efficient 3D VLSI layout of the de Bruijn network with optimal volume and near optimal wire-length. Our layout consists of a number of copies of a single 2D VLSI layout for a subnetwork of the de Bruijn network.

[1]  Eric J. Schwabe Optimality of a VLSI Decomposition Scheme for the Debruijn Graph , 1993, Parallel Process. Lett..

[2]  David S. Wise Compact Layouts of Banyan/FFT Networks , 1981 .

[3]  Frank Thomson Leighton Complexity Issues in VLSI: Optimal Layouts for the Shuffle-Exchange Graph and Other Networks , 2003 .

[4]  Dhiraj K. Pradhan,et al.  Fault-Tolerant VLSI Architectures Based on de Bruijn Graphs (Galileo in the Mid Nineties) , 1989, Reliability Of Computer And Communication Networks.

[5]  Tsz-Mei Ko,et al.  Some VLSI decompositions of the de Bruijn graph , 1992, Discret. Math..

[6]  Samuel Dolinar,et al.  A VLSI decomposition of the deBruijn graph , 1989, JACM.

[7]  F. Thomas Leighton,et al.  Complexity Issues in VLSI , 1983 .

[8]  Shuichi Ueno,et al.  On VLSI decompositions for deBruijn graphs , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[9]  Arnold L. Rosenberg,et al.  Work-preserving emulations of fixed-connection networks , 1989, STOC '89.

[10]  Dhiraj K. Pradhan,et al.  The De Bruijn Multiprocessor Network: A Versatile Parallel Processing and Sorting Network for VLSI , 1989, IEEE Trans. Computers.

[11]  André Raspaud,et al.  Cutwidth of the Bruijn Graph , 1995, RAIRO Theor. Informatics Appl..

[12]  P. Tvrdik,et al.  Decompositions of de Bruijn networks , 1998, Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250).

[13]  Arnold L. Rosenberg,et al.  Three-Dimensional VLSI: a case study , 1983, JACM.

[14]  Numérisation de documents anciens mathématiques Informatique théorique et applications : Theoretical informatics and applications. , 1986 .

[15]  Peter Eades,et al.  The Techniques of Komolgorov and Bardzin for Three-Dimensional Orthogonal Graph Drawings , 1996, Inf. Process. Lett..

[16]  Arnold L. Rosenberg,et al.  Work-preserving emulations of fixed-connection networks , 1997, JACM.