On a Transfer Theorem for the P != NP Conjecture

Abstract A model of computation is defined over the algebraic numbers and over number fields. This model is non-uniform, and the cost of operations depends on the height of the operands and on the degree of the extension of the rational defined by those operands. A transfer theorem for the P ≠ N P Conjecture is proved, namely: P ≠ N P in this model over the real algebraic numbers if and only if P ≠ N P in the classical setting.

[1]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[2]  Teresa Krick,et al.  A computational method for diophantine approximation , 1996 .

[3]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[4]  Felipe Cucker,et al.  Computing over the Reals with Addition and Order: Higher Complexity Classes , 1995, J. Complex..

[5]  Felipe Cucker,et al.  Algebraic Settings for the Problem “P ≠ NP?” , 1998 .

[6]  Felipe Cucker On weak and weighted computations over the real closure of Q , 2001, Theor. Comput. Sci..

[7]  Christian Michaux P != NP over the Nonstandard Reals Implies P != NP over R , 1994, Theor. Comput. Sci..

[8]  J. Calmet Computer Algebra , 1982 .

[9]  S. Smale Mathematical problems for the next century , 1998 .

[10]  Richard E. Ewing,et al.  "The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics" , 1986 .

[11]  Klaus Meer,et al.  On the structure of NPC , 1999 .

[12]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[13]  László Lovász,et al.  Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.

[14]  J. Neukirch Algebraic Number Theory , 1999 .

[15]  R. Loos Computing in Algebraic Extensions , 1983 .

[16]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[17]  Felipe Cucker,et al.  Two P-complete problems in the theory of the reals , 1992, J. Complex..

[18]  Pascal Koiran Computing over the Reals with Addition and Order , 1994, Theor. Comput. Sci..

[19]  Felipe Cucker,et al.  Pr != Ncr , 1992, Journal of Complexity.

[20]  Gregorio Malajovich,et al.  On Generalized Newton Algorithms: Quadratic Convergence, Path-Following and Error Analysis , 1994, Theor. Comput. Sci..

[21]  M. Mignotte Some Useful Bounds , 1983 .

[22]  Z. I. Borevich,et al.  Théorie des nombres , 1967 .

[23]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[24]  Dima Grigoriev,et al.  On the Power of Real Turing Machines Over Binary Inputs , 1997, SIAM J. Comput..

[25]  Pascal Koiran A weak version of the Blum, Shub and Smale model , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[26]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[27]  S. Smale,et al.  On the complexity of path-following newton algorithms for solving systems of polynomial equations with integer coefficients , 1993 .

[28]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[29]  S. Smale Newton’s Method Estimates from Data at One Point , 1986 .

[30]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[31]  Peter A. Beling,et al.  Polynomial algorithms for linear programming over the algebraic numbers , 1992, STOC '92.

[32]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[33]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[34]  Jennifer Whitehead,et al.  Computational Complexity over thep-adic Numbers , 1997, J. Complex..

[35]  Serge Lang Survey of diophantine geometry , 1962 .