Design of near-α Ti alloys via a cluster formula approach and their high-temperature oxidation resistance

[1]  Mikhail Feygenson,et al.  Chemical short-range orders and the induced structural transition in high-entropy alloys , 2018 .

[2]  C. Dong,et al.  Structural Stability of the Metastable β-[(Mo0.5Sn0.5)-(Ti13Zr1)]Nb1 Alloy with Low Young’s Modulus at Different States , 2017, Metallurgical and Materials Transactions A.

[3]  C. Dong,et al.  Effects of Nb and Zr on structural stabilities of Ti-Mo-Sn-based alloys with low modulus , 2017 .

[4]  Fei Weng,et al.  High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review , 2016 .

[5]  C. Dong,et al.  Cluster-plus-glue-atom model and universal composition formulas [cluster](glue atom)x for BCC solid solution alloys , 2015 .

[6]  A. Smirnov,et al.  Atomic short-range order and incipient long-range order in high-entropy alloys , 2015 .

[7]  C. Dong,et al.  Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [β/(α + β)] Phase-Boundary Slopes , 2015, Metallurgical and Materials Transactions A.

[8]  W. Zeng,et al.  Study of fatigue properties of forged BT25 titanium alloy based on fractographic and quantitative microstructural analysis , 2015 .

[9]  R. Pederson,et al.  Oxidation and alpha-case formation in Ti–6Al–2Sn–4Zr–2Mo alloy , 2015 .

[10]  H. Clemens,et al.  High-temperature oxidation behavior of multi-phase Mo-containing γ-TiAl-based alloys , 2014 .

[11]  Y. Kawazoe,et al.  Determining characteristic principal clusters in the “cluster-plus-glue-atom” model , 2014 .

[12]  S. Kamat,et al.  Influence of thermomechanical processing and heat treatment on microstructure, tensile properties and fracture toughness of Ti-1100-0.1B alloy , 2014 .

[13]  Chunjun Ji,et al.  β-Ti Alloys with Low Young’s Moduli Interpreted by Cluster-Plus-Glue-Atom Model , 2013, Metallurgical and Materials Transactions A.

[14]  Yuanfei Han,et al.  The influence of thermomechanical processing on microstructural evolution of Ti600 titanium alloy , 2011 .

[15]  Chuang Dong,et al.  The e/a values of ideal metallic glasses in relation to cluster formulae , 2011 .

[16]  W. Zeng,et al.  Oxidation behavior and effect of oxidation on tensile properties of Ti60 alloy , 2011 .

[17]  P. Novák,et al.  Effect of niobium on the structure and high-temperature oxidation of TiAl–Ti5Si3 eutectic alloy , 2008 .

[18]  J. Bai,et al.  Atomic packing and short-to-medium-range order in metallic glasses , 2006, Nature.

[19]  Akira Takeuchi,et al.  Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element , 2005 .

[20]  V. Singh,et al.  Oxidation behaviour of the near α-titanium alloy IMI 834 , 2004 .

[21]  E. A. Starke,et al.  Progress in structural materials for aerospace systems , 2003 .

[22]  Christoph Leyens,et al.  Titanium Alloys for Aerospace Applications , 2003 .

[23]  Yun-De Lu,et al.  Effect of Nb on the high temperature oxidation of Ti (0-50 at.%)Al , 2002 .

[24]  H. Maier,et al.  Thermomechanical fatigue behavior of the high-temperature titanium alloy IMI 834 , 1998 .

[25]  G. Lütjering Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys , 1998 .

[26]  R. Keith Bird,et al.  Titanium Alloys and Processing for High Speed Aircraft , 1998 .

[27]  P. Aswath,et al.  Microstructural stability, microhardness and oxidation behaviour of in situ reinforced Ti–8.5Al–1B–1Si (wt%) , 1998 .

[28]  Jan Sieniawski,et al.  The effect of microstructure on the mechanical properties of two-phase titanium alloys , 1997 .

[29]  E. W. Plummer,et al.  Giant Friedel Oscillations on the Beryllium(0001) Surface , 1997, Science.

[30]  T. Roy,et al.  High-temperature oxidation of Ti3Al-based titanium aluminides in oxygen , 1996 .

[31]  R. Boyer An overview on the use of titanium in the aerospace industry , 1996 .

[32]  C. Leyens,et al.  Influence of microstructure on oxidation behaviour of near-α titanium alloys , 1996 .

[33]  T. Shibata,et al.  Influence of additional elements on the oxidation behaviour of TiAl , 1996 .

[34]  M. Yoshihara,et al.  Effects of Nb addition on oxidation behavior of TiAl , 1995 .

[35]  Paul J. Bania,et al.  Beta titanium alloys and their role in the titanium industry , 1994 .

[36]  P. K. Datta,et al.  Air oxidation behaviour of Ti6Al4V alloy between 650 and 850 , 1994 .

[37]  S. Frangini,et al.  Various aspects of the air oxidation behaviour of a Ti6Al4V alloy at temperatures in the range 600–700 °C , 1994, Journal of Materials Science.

[38]  G. Welsch,et al.  Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys , 1988 .

[39]  M. Hennion,et al.  First measurement of short-range-order inversion as a function of concentration in a transition alloy , 1984 .

[40]  S. Mrowec On the mechanism of high temperature oxidation of metals and alloys , 1967 .

[41]  J. Friedel,et al.  Electronic structure of primary solid solutions in metals , 1954 .

[42]  J. M. Cowley An Approximate Theory of Order in Alloys , 1950 .

[43]  William Hume-Rothery,et al.  The structure of metals and alloys , 1939 .