Machine Learning Supporting Experimental Design for Product Development in the Lab

[1]  Pritam Ranjan,et al.  A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data , 2010, Technometrics.

[2]  Victor Picheny,et al.  Multiobjective optimization using Gaussian process emulators via stepwise uncertainty reduction , 2013, Statistics and Computing.

[3]  Hugh A. Chipman,et al.  GPfit: An R Package for Fitting a Gaussian Process Model to Deterministic Simulator Outputs , 2013, 1305.0759.

[4]  Alexei Lapkin,et al.  Automatic discovery and optimization of chemical processes , 2015 .

[5]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[6]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[7]  Michael Bortz,et al.  Experimental Design in a Multicriteria Optimization Context: An Adaptive Scheme , 2018 .

[8]  Alex Smola,et al.  Kernel methods in machine learning , 2007, math/0701907.

[9]  H. Mol,et al.  Application of Fragment Ion Information as Further Evidence in Probabilistic Compound Screening Using Bayesian Statistics and Machine Learning: A Leap Toward Automation. , 2016, Analytical chemistry.

[10]  Michael W. George,et al.  Real-Time Feedback Control Using Online Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy for Continuous Flow Optimization and Process Knowledge , 2013, Applied Spectroscopy.

[11]  Klavs F Jensen,et al.  An integrated microreactor system for self-optimization of a Heck reaction: from micro- to mesoscale flow systems. , 2010, Angewandte Chemie.

[12]  Richard Welke,et al.  Multi‐Objective Optimization and Decision Support in Process Engineering – Implementation and Application , 2014 .

[13]  SchmidhuberJürgen Deep learning in neural networks , 2015 .

[14]  Michael Bortz,et al.  Multi-criteria optimization in chemical process design and decision support by navigation on Pareto sets , 2014, Comput. Chem. Eng..

[15]  P. W. Wilson,et al.  Statistical Inference in Nonparametric Frontier Models: The State of the Art , 1999 .

[16]  Sandro Macchietto,et al.  Model-based design of experiments for parameter precision: State of the art , 2008 .

[17]  Joachim Kunert,et al.  An Efficient Sequential Optimization Approach Based on the Multivariate Expected Improvement Criterion , 2007 .