Diffusion-weighted imaging of the breast—a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group

[1]  Samuel J. Magny,et al.  Breast Imaging Reporting and Data System , 2020, Definitions.

[2]  Danny F. Martinez,et al.  Radiomic Signatures Derived from Diffusion-Weighted Imaging for the Assessment of Breast Cancer Receptor Status and Molecular Subtypes , 2019, Molecular Imaging and Biology.

[3]  F. Gilbert,et al.  A Meta-analysis of the Diagnostic Performance of Diffusion MRI for Breast Lesion Characterization. , 2019, Radiology.

[4]  Colleen H. Neal,et al.  Utility of Diffusion-weighted Imaging to Decrease Unnecessary Biopsies Prompted by Breast MRI: A Trial of the ECOG-ACRIN Cancer Research Group (A6702) , 2019, Clinical Cancer Research.

[5]  L. Esserman,et al.  Test–retest repeatability and reproducibility of ADC measures by breast DWI: Results from the ACRIN 6698 trial , 2018, Journal of magnetic resonance imaging : JMRI.

[6]  Lihua Li,et al.  Differentiation of triple-negative breast cancer from other subtypes through whole-tumor histogram analysis on multiparametric MR imaging , 2018, European Radiology.

[7]  Zheng Zhang,et al.  Diffusion-weighted MRI Findings Predict Pathologic Response in Neoadjuvant Treatment of Breast Cancer: The ACRIN 6698 Multicenter Trial. , 2018, Radiology.

[8]  R. Grimm,et al.  Risk stratification of ductal carcinoma in situ using whole-lesion histogram analysis of the apparent diffusion coefficient , 2018, European Radiology.

[9]  H. Degani,et al.  Quantitative evaluation of breast cancer response to neoadjuvant chemotherapy by diffusion tensor imaging: Initial results , 2018, Journal of magnetic resonance imaging : JMRI.

[10]  Effects of diffusion time on non-Gaussian diffusion and intravoxel incoherent motion (IVIM) MRI parameters in breast cancer and hepatocellular carcinoma xenograft models , 2018, Acta radiologica open.

[11]  C. Jack,et al.  Quantitative magnetic resonance imaging phantoms: A review and the need for a system phantom , 2018, Magnetic resonance in medicine.

[12]  Stuart A. Taylor,et al.  UK quantitative WB-DWI technical workgroup: consensus meeting recommendations on optimisation, quality control, processing and analysis of quantitative whole-body diffusion-weighted imaging for cancer , 2017, The British journal of radiology.

[13]  Kaori Togashi,et al.  Intravoxel Incoherent Motion and Quantitative Non-Gaussian Diffusion MR Imaging: Evaluation of the Diagnostic and Prognostic Value of Several Markers of Malignant and Benign Breast Lesions. , 2017, Radiology.

[14]  Thomas E. Yankeelov,et al.  Multisite concordance of apparent diffusion coefficient measurements across the NCI Quantitative Imaging Network , 2017, Journal of medical imaging.

[15]  Qiu-ying Yao,et al.  Breast Lesions: Diagnosis Using Diffusion Weighted Imaging at 1.5T and 3.0T—Systematic Review and Meta‐analysis , 2017, Clinical breast cancer.

[16]  S. Suo,et al.  Multiparametric diffusion‐weighted imaging in breast lesions: Association with pathologic diagnosis and prognostic factors , 2017, Journal of magnetic resonance imaging : JMRI.

[17]  R. Grimm,et al.  Intravoxel incoherent motion (IVIM)‐derived parameters in diffusion‐weighted MRI: Associations with prognostic factors in invasive ductal carcinoma , 2017, Journal of magnetic resonance imaging : JMRI.

[18]  D. Collins,et al.  Extracranial Soft-Tissue Tumors: Repeatability of Apparent Diffusion Coefficient Estimates from Diffusion-weighted MR Imaging. , 2017, Radiology.

[19]  M. Uğurlu,et al.  Diagnostic performance of diffusion tensor imaging parameters in breast cancer and correlation with the prognostic factors , 2017, Journal of magnetic resonance imaging : JMRI.

[20]  Noam Nissan,et al.  Diffusion‐weighted breast MRI: Clinical applications and emerging techniques , 2017, Journal of magnetic resonance imaging : JMRI.

[21]  Wolfgang Bogner,et al.  Diffusion-weighted imaging of breast lesions: Region-of-interest placement and different ADC parameters influence apparent diffusion coefficient values , 2017, European Radiology.

[22]  Maria Bernathova,et al.  Diffusion‐weighted MRI of breast lesions: a prospective clinical investigation of the quantitative imaging biomarker characteristics of reproducibility, repeatability, and diagnostic accuracy , 2016, NMR in biomedicine.

[23]  Geoffrey S. Payne,et al.  DCE-MRI, DW-MRI, and MRS in Cancer: Challenges and Advantages of Implementing Qualitative and Quantitative Multi-parametric Imaging in the Clinic , 2016, Topics in magnetic resonance imaging : TMRI.

[24]  N. Hylton,et al.  Design of a breast phantom for quantitative MRI , 2016, Journal of magnetic resonance imaging : JMRI.

[25]  Li Zhang,et al.  Accuracy of combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging for breast cancer detection: a meta-analysis , 2016, Acta radiologica.

[26]  N. Toschi,et al.  On the use of trace-weighted images in body diffusional kurtosis imaging. , 2016, Magnetic resonance imaging.

[27]  Jin You Kim,et al.  Apparent diffusion coefficient of breast cancer and normal fibroglandular tissue in diffusion-weighted imaging: the effects of menstrual cycle and menopausal status , 2016, Breast Cancer Research and Treatment.

[28]  Jian-Rong Ding,et al.  Apparent diffusion coefficient value of diffusion-weighted imaging for differential diagnosis of ductal carcinoma in situ and infiltrating ductal carcinoma. , 2016, Journal of cancer research and therapeutics.

[29]  M. Esposito,et al.  Quality assurance multicenter comparison of different MR scanners for quantitative diffusion‐weighted imaging , 2016, Journal of magnetic resonance imaging : JMRI.

[30]  D. Margolis,et al.  PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2. , 2016, European urology.

[31]  D. Sodickson,et al.  Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors , 2016, European Radiology.

[32]  M. Dietzel,et al.  Combined reading of Contrast Enhanced and Diffusion Weighted Magnetic Resonance Imaging by using a simple sum score , 2016, European Radiology.

[33]  H. Moshonov,et al.  Evaluation of Apparent Diffusion Coefficient to Predict Grade, Microinvasion, and Invasion in Ductal Carcinoma In Situ of the Breast. , 2015, Academic radiology.

[34]  Amro Masarwah,et al.  Diffusion-Weighted Imaging in 3.0 Tesla Breast MRI: Diagnostic Performance and Tumor Characterization Using Small Subregions vs. Whole Tumor Regions of Interest , 2015, PloS one.

[35]  Dominic Holland,et al.  Inhomogeneous static magnetic field‐induced distortion correction applied to diffusion weighted MRI of the breast at 3T , 2015, Magnetic resonance in medicine.

[36]  Daniel K Sodickson,et al.  Comparison of fitting methods and b‐value sampling strategies for intravoxel incoherent motion in breast cancer , 2015, Magnetic resonance in medicine.

[37]  John Kornak,et al.  Gradient nonlinearity correction to improve apparent diffusion coefficient accuracy and standardization in the american college of radiology imaging network 6698 breast cancer trial , 2015, Journal of magnetic resonance imaging : JMRI.

[38]  E Crowe,et al.  Assessment and quantification of sources of variability in breast apparent diffusion coefficient (ADC) measurements at diffusion weighted imaging. , 2015, European journal of radiology.

[39]  Saadallah Ramadan,et al.  Utilisation of MR spectroscopy and diffusion weighted imaging in predicting and monitoring of breast cancer response to chemotherapy , 2015, Journal of medical imaging and radiation oncology.

[40]  Kunwei Shen,et al.  Breast Cancer: Diffusion Kurtosis MR Imaging-Diagnostic Accuracy and Correlation with Clinical-Pathologic Factors. , 2015, Radiology.

[41]  Thomas E Yankeelov,et al.  Multiparametric Magnetic Resonance Imaging for Predicting Pathological Response After the First Cycle of Neoadjuvant Chemotherapy in Breast Cancer , 2015, Investigative radiology.

[42]  D. Le Bihan,et al.  Quantitative Non-Gaussian Diffusion and Intravoxel Incoherent Motion Magnetic Resonance Imaging: Differentiation of Malignant and Benign Breast Lesions , 2015, Investigative radiology.

[43]  Bing Ma,et al.  Multi-Site Clinical Evaluation of DW-MRI as a Treatment Response Metric for Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy , 2015, PloS one.

[44]  Hugo Alexandre Ferreira,et al.  Breast DWI at 3 T: influence of the fat-suppression technique on image quality and diagnostic performance. , 2015, Clinical radiology.

[45]  R. Nunes,et al.  Region of interest demarcation for quantification of the apparent diffusion coefficient in breast lesions and its interobserver variability. , 2015, Diagnostic and interventional radiology.

[46]  H. Barnhart,et al.  The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions , 2015, Statistical methods in medical research.

[47]  T. Helbich,et al.  Quantitative Apparent Diffusion Coefficient as a Noninvasive Imaging Biomarker for the Differentiation of Invasive Breast Cancer and Ductal Carcinoma In Situ , 2015, Investigative radiology.

[48]  Dongmei Wu,et al.  Characterization of Breast Tumors Using Diffusion Kurtosis Imaging (DKI) , 2014, PloS one.

[49]  Louisa Bokacheva,et al.  Intravoxel incoherent motion diffusion‐weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma , 2014, Journal of magnetic resonance imaging : JMRI.

[50]  M. Oudkerk,et al.  Effect of b value and pre-admission of contrast on diagnostic accuracy of 1.5-T breast DWI: a systematic review and meta-analysis , 2014, European Radiology.

[51]  T. Helbich,et al.  MRI-only lesions: application of diffusion-weighted imaging obviates unnecessary MR-guided breast biopsies , 2014, European Radiology.

[52]  R. Nunes,et al.  Diffusion-weighted breast imaging at 3 T: preliminary experience. , 2014, Clinical radiology.

[53]  H. Degani,et al.  Diffusion-tensor MR imaging of the breast: hormonal regulation. , 2014, Radiology.

[54]  John Kornak,et al.  Repeatability of quantitative MRI measurements in normal breast tissue. , 2014, Translational oncology.

[55]  Mauro Iori,et al.  MR Scanner Systems Should Be Adequately Characterized in Diffusion-MRI of the Breast , 2014, PloS one.

[56]  Shuixing Zhang,et al.  Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. , 2013, European journal of radiology.

[57]  Ozgur Cakir,et al.  Comparison of the diagnostic performances of diffusion parameters in diffusion weighted imaging and diffusion tensor imaging of breast lesions. , 2013, European journal of radiology.

[58]  D. Bihan Apparent Diffusion Coefficient and Beyond: What Diffusion MR Imaging Can Tell Us about Tissue Structure , 2013 .

[59]  Christopher J. Hardy,et al.  Improved correction for gradient nonlinearity effects in diffusion‐weighted imaging , 2013, Journal of magnetic resonance imaging : JMRI.

[60]  Isabelle Thomassin,et al.  Diffusion-weighted MRI in pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer , 2013, European Radiology.

[61]  Timothy D Johnson,et al.  Multi‐system repeatability and reproducibility of apparent diffusion coefficient measurement using an ice‐water phantom , 2013, Journal of magnetic resonance imaging : JMRI.

[62]  K. Pinker,et al.  Combined contrast-enhanced magnetic resonance and diffusion-weighted imaging reading adapted to the “Breast Imaging Reporting and Data System” for multiparametric 3-T imaging of breast lesions , 2013, European Radiology.

[63]  D. Le Bihan Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. , 2013, Radiology.

[64]  Diffusion weighted imaging of liver lesions suspect for metastases: Apparent diffusion coefficient (ADC) values and lesion contrast are independent from Gd-EOB-DTPA administration. , 2012, European journal of radiology.

[65]  Erez Eyal,et al.  Parametric Diffusion Tensor Imaging of the Breast , 2012, Investigative radiology.

[66]  Eun-Kyung Kim,et al.  Triple-negative invasive breast cancer on dynamic contrast-enhanced and diffusion-weighted MR imaging: comparison with other breast cancer subtypes , 2012, European Radiology.

[67]  N. deSouza,et al.  Diffusion weighted imaging of the normal breast: reproducibility of apparent diffusion coefficient measurements and variation with menstrual cycle and menopausal status , 2012, European Radiology.

[68]  C. Meyer,et al.  Diffusion coefficient measurement using a temperature‐controlled fluid for quality control in multicenter studies , 2011, Journal of magnetic resonance imaging : JMRI.

[69]  Kaori Togashi,et al.  Apparent diffusion coefficient as an MR imaging biomarker of low-risk ductal carcinoma in situ: a pilot study. , 2011, Radiology.

[70]  Wendy B DeMartini,et al.  Characterization of ductal carcinoma in situ on diffusion weighted breast MRI , 2011, European Radiology.

[71]  D. Sodickson,et al.  Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer , 2011, Magnetic resonance in medicine.

[72]  Thomas E Yankeelov,et al.  Motion correction in diffusion‐weighted MRI of the breast at 3T , 2011, Journal of magnetic resonance imaging : JMRI.

[73]  Qian Wu,et al.  Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions , 2010, BMC Cancer.

[74]  Wendy B DeMartini,et al.  Apparent diffusion coefficient values for discriminating benign and malignant breast MRI lesions: effects of lesion type and size. , 2010, AJR. American journal of roentgenology.

[75]  M. Oudkerk,et al.  Diffusion‐weighted imaging of normal fibroglandular breast tissue: influence of microperfusion and fat suppression technique on the apparent diffusion coefficient , 2010, NMR in biomedicine.

[76]  Roberto Orecchia,et al.  Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. , 2010, European journal of cancer.

[77]  Wendy B DeMartini,et al.  Diffusion tensor MRI: Preliminary anisotropy measures and mapping of breast tumors , 2010, Journal of magnetic resonance imaging : JMRI.

[78]  Matthias Dietzel,et al.  Diffusion tensor magnetic resonance imaging of the breast: a pilot study , 2010, European Radiology.

[79]  Wendy B DeMartini,et al.  Quantitative diffusion-weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value. , 2009, AJR. American journal of roentgenology.

[80]  Robin M Heidemann,et al.  High resolution diffusion‐weighted imaging using readout‐segmented echo‐planar imaging, parallel imaging and a two‐dimensional navigator‐based reacquisition , 2009, Magnetic resonance in medicine.

[81]  H. Hatabu,et al.  Diffusion-weighted imaging of mucinous carcinoma of the breast: evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings. , 2009, AJR. American journal of roentgenology.

[82]  J. R. Reichenbach,et al.  Diffusion-weighted imaging (DWI) in MR mammography (MRM): clinical comparison of echo planar imaging (EPI) and half-Fourier single-shot turbo spin echo (HASTE) diffusion techniques , 2009, European Radiology.

[83]  C. Boetes,et al.  Breast MRI: guidelines from the European Society of Breast Imaging , 2008, European Radiology.

[84]  Evelyn Wenkel,et al.  Diffusion weighted imaging in breast MRI: comparison of two different pulse sequences. , 2007, Academic radiology.

[85]  Peter Gibbs,et al.  Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. , 2006, Magnetic resonance imaging.

[86]  Thierry Metens,et al.  Quantitative diffusion imaging in breast cancer: A clinical prospective study , 2006, Journal of magnetic resonance imaging : JMRI.

[87]  H. Thomsen,et al.  ESUR guidelines on contrast media , 2006, Abdominal Imaging.

[88]  Peter Kellman,et al.  Image reconstruction in SNR units: A general method for SNR measurement † , 2005, Magnetic resonance in medicine.

[89]  S. Schoenberg,et al.  Practical approaches to the evaluation of signal‐to‐noise ratio performance with parallel imaging: Application with cardiac imaging and a 32‐channel cardiac coil , 2005, Magnetic resonance in medicine.

[90]  Masahiko Watanabe,et al.  Diffusion-Weighted Imaging of Malignant Breast Tumors: The Usefulness of Apparent Diffusion Coefficient (ADC) Value and ADC Map for the Detection of Malignant Breast Tumors and Evaluation of Cancer Extension , 2005, Journal of computer assisted tomography.

[91]  Masanori Ozaki,et al.  ADC mapping of benign and malignant breast tumors. , 2005, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[92]  M. Leach,et al.  Developing a quality control protocol for diffusion imaging on a clinical MRI system. , 2004, Physics in medicine and biology.

[93]  L. Liberman,et al.  Breast imaging reporting and data system (BI-RADS). , 2002, Radiologic clinics of North America.

[94]  T. A. Carpenter,et al.  Optimised diffusion-weighting for measurement of apparent diffusion coefficient (ADC) in human brain. , 1997, Magnetic resonance imaging.