Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection.

[1]  J. de la Fuente,et al.  Interaction of the tick immune system with transmitted pathogens , 2013, Front. Cell. Infect. Microbiol..

[2]  J. de la Fuente,et al.  Tick vaccines and the control of tick-borne pathogens , 2013, Front. Cell. Infect. Microbiol..

[3]  M. Villar,et al.  Reciprocal Regulation of NF-kB (Relish) and Subolesin in the Tick Vector, Ixodes scapularis , 2013, PloS one.

[4]  C. Gortázar,et al.  Control of multiple arthropod vector infestations with subolesin/akirin vaccines. , 2013, Vaccine.

[5]  J. D. L. Fuente Vaccines for vector control: exciting possibilities for the future. , 2012 .

[6]  J. Mosqueda,et al.  The identification of a VDAC-like protein involved in the interaction of Babesia bigemina sexual stages with Rhipicephalus microplus midgut cells. , 2012, Veterinary parasitology.

[7]  V. do Rosário,et al.  Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. , 2012, International journal for parasitology.

[8]  C. Gortázar,et al.  Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer. , 2012, Vaccine.

[9]  M. Villar,et al.  Targeting the tick protective antigen subolesin reduces vector infestations and pathogen infection by Anaplasma marginale and Babesia bigemina. , 2011, Vaccine.

[10]  M. Villar,et al.  Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission. , 2011, Veterinary parasitology.

[11]  M. Villar,et al.  Control of Rhipicephalus (Boophilus) microplus infestations by the combination of subolesin vaccination and tick autocidal control after subolesin gene knockdown in ticks fed on cattle. , 2011, Vaccine.

[12]  I. Rodríguez,et al.  Response of Mexican Rhipicephalus (Boophilus) microplus Ticks to Selection by Amitraz and Genetic Analysis of Attained Resistance , 2011 .

[13]  M. Madder,et al.  Rhipicephalus (Boophilus) microplus: a most successful invasive tick species in West-Africa , 2011, Experimental and Applied Acarology.

[14]  M. Villar,et al.  Characterization of Aedes albopictus akirin for the control of mosquito and sand fly infestations. , 2010, Vaccine.

[15]  Margarita Villar,et al.  Mapping protective epitopes in the tick and mosquito subolesin ortholog proteins. , 2010, Vaccine.

[16]  Ryan S. Miller,et al.  One Health approach to identify research needs in bovine and human babesioses: workshop report , 2010, Parasites & Vectors.

[17]  E. Esteves,et al.  Differential expression of genes in salivary glands of male Rhipicephalus (Boophilus)microplus in response to infection with Anaplasma marginale , 2010, BMC Genomics.

[18]  S. Caracappa,et al.  Subolesin expression in response to pathogen infection in ticks , 2010, BMC Immunology.

[19]  M. Villar,et al.  Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations , 2009, Parasitology Research.

[20]  J. de la Fuente,et al.  Silencing of genes involved in Anaplasma marginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis , 2009, BMC Developmental Biology.

[21]  C. Gortázar,et al.  Evidence of the role of tick subolesin in gene expression , 2008, BMC Genomics.

[22]  Kate E. Jones,et al.  Global trends in emerging infectious diseases , 2008, Nature.

[23]  J. de la Fuente,et al.  Functional genomic studies of tick cells in response to infection with the cattle pathogen, Anaplasma marginale. , 2007, Genomics.

[24]  C. Scholtz,et al.  Climate change and the genus Rhipicephalus (Acari: Ixodidae) in Africa. , 2007, The Onderstepoort journal of veterinary research.

[25]  E. Fikrig,et al.  Tick-host-pathogen interactions in Lyme borreliosis. , 2007, Trends in parasitology.

[26]  J. de la Fuente,et al.  A ten-year review of commercial vaccine performance for control of tick infestations on cattle , 2007, Animal Health Research Reviews.

[27]  A. Mulenga,et al.  The molecular basis of the Amblyomma americanum tick attachment phase , 2007, Experimental and Applied Acarology.

[28]  J. Fuente,et al.  Transovarial silencing of the subolesin gene in three-host ixodid tick species after injection of replete females with subolesin dsRNA , 2007, Parasitology Research.

[29]  S. Wikel,et al.  Transcriptome analysis of the salivary glands of Dermacentor andersoni Stiles (Acari: Ixodidae). , 2007, Insect biochemistry and molecular biology.

[30]  J. Fuente,et al.  Strategies for development of vaccines for control of ixodid tick species , 2006, Parasite immunology.

[31]  J. Fuente,et al.  Reduction of tick infections with Anaplasma marginale and A. phagocytophilum by targeting the tick protective antigen subolesin , 2006, Parasitology Research.

[32]  P. Willadsen Tick control: thoughts on a research agenda. , 2006, Veterinary parasitology.

[33]  G. J. C. Alarcón,et al.  Anaplasma marginale: lack of cross-protection between strains that share MSP1a variable region and MSP4. , 2006, Veterinary microbiology.

[34]  R. Hails,et al.  An Antivector Vaccine Protects against a Lethal Vector-Borne Pathogen , 2006, PLoS pathogens.

[35]  F. Jongejan,et al.  The Known Distribution and Ecological Preferences of the Tick Subgenus Boophilus (Acari: Ixodidae) in Africa and Latin America , 2006, Experimental & Applied Acarology.

[36]  B. Sharp,et al.  Tick, fly, and mosquito control--lessons from the past, solutions for the future. , 2005, Veterinary parasitology.

[37]  Ruth R. Montgomery,et al.  TROSPA, an Ixodes scapularis Receptor for Borrelia burgdorferi , 2004, Cell.

[38]  M. Molento,et al.  Tick control: an industry point of view , 2004, Parasitology.

[39]  J. Ribeiro,et al.  Gene Discovery in Boophilus microplus, the Cattle Tick: The Transcriptomes of Ovaries, Salivary Glands, and Hemocytes , 2004, Annals of the New York Academy of Sciences.

[40]  J. Mosqueda,et al.  Babesia bigemina: Sporozoite Isolation from Boophilus microplus Nymphs and Initial Immunomolecular Characterization , 2004, Annals of the New York Academy of Sciences.

[41]  S. Barker,et al.  Systematics and evolution of ticks with a list of valid genus and species names , 2004, Parasitology.

[42]  J. de la Fuente,et al.  Identification of protective antigens for the control of Ixodes scapularis infestations using cDNA expression library immunization. , 2003, Vaccine.

[43]  R. Lewis,et al.  Molecular architecture and evolution of a modular spider silk protein gene. , 2000, Science.

[44]  J. Fuente,et al.  Field studies and cost-effectiveness analysis of vaccination with Gavac against the cattle tick Boophilus microplus. , 1998, Vaccine.

[45]  J. de la Fuente,et al.  Large-scale production in Pichia pastoris of the recombinant vaccine Gavac against cattle tick. , 1997, Vaccine.

[46]  D. Smith,et al.  Vaccination against Boophilus microplus: the Australian field experience. , 1995 .